

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Basics of Ore Geology, Industrial Minerals and Rocks

2526-3-E3401Q046

Obiettivi

Introduzione alle risorse minerarie, dai minerali metallici (ore minerals) ai minerali industriali (industrial minerals), fino alle rocce ornamentali (dimension stones) ed agli aggregati (sabbie e ghiaie). Vengono forniti i concetti base per la descrizione di un giacimento, sia dal punto di vista geometrico - morfologico, sia genetico (giacimenti magmatici, idrotermali, sedimentari, metamorfici ed arricchimento supergenico), nonchè le tecniche di prospezione mineraria. Vengono infine descritte le principali metodologie di coltivazione mineraria di cave e miniere, a cielo aperto ed in sotterraneo, nonché le principali tecniche analitiche utili per caratterizzare ore ed industrial minerals.

Conoscenze e capacità di comprensione

Conoscenze di base sulle caratteristiche dei giacimenti di minerali metallici (ore minerals) e dei minerali industriali delle loro caratteristiche genetiche. Modalità di estrazione mineraria e lavorazione, con particolare attenzione alla gestione ambientale. Caratterizzazione dei materiali di interesse economico ed industriale, scelta dell'approccio migliore in termini economici e pratici.

Conoscenza e capacità di comprensione applicate

Lo studente sarà in grado di applicare le conoscenze teoriche per analizzare e interpretare dati sperimentali per la ricerca dei depositi minerari (prospezione) e per la caratterizzazione mineralogica, petrografica e tecnica di ore & industrial minerals.

Autonomia di giudizio

Al termine del corso, lo studente sarà in grado di valutare criticamente modelli teorici e risultati sperimentali riguardanti le caratteristiche e le proprietà dei minerali metallici e dei minerali industriali. Sarà inoltre capace di selezionare le tecniche analitiche più appropriate in funzione delle caratteristiche dei materiali (minerali, rocce, aggregati).

Abilità comunicative

Lo studente acquisirà un linguaggio tecnico adeguato alla descrizione dei giacimenti minerari e dei relativi processi genetici, e sarà in grado di comunicare efficacemente concetti complessi relativi ai processi minerogenetici. Durante il corso, sarà inoltre incoraggiato a sperimentare la comunicazione scientifica in lingua inglese, con lettura

di articoli scientifici selezionati.

Capacità di apprendere

Il corso mira a fornire agli studenti un metodo scientifico solido e flessibile, che consenta loro di affrontare in modo autonomo e critico lo studio dei giacimenti minerari e dei materiali geologici di interesse industriale. Le competenze acquisite saranno trasferibili anche ad altri ambiti scientifico/tecnici e professionali, come la ricerca di depositi minerari, la caratterizzazione tecnica dei materiali e l'interpretazione di dati ambientali.

Contenuti sintetici

- Ore ed industrial minerals, concetto di giacimento minerario, tenore, tonnellaggio e Clarke (tenore medio crostale).
- Estrazione e lavorazione dei minerali metallici ed industriali, ore dressing, problematiche ambientali connesse (es. AMD acid mine drainage).
- Cave e miniere, normativa nazionale ed internazionale. Tecniche di coltivazione mineraria a cielo aperto ed in sotterraneo.
- Coltivazione mineraria con esplosivo, a cielo aperto ed in sotterraneo.
- Evoluzione della crosta terrestre dall'Archeano al Fanerozoico, principali eventi metallogenici.
- Le principali tecniche analitiche per la caratterizzazione chimica e mineralogica di ore ed industrial minerals: microscopia ottica in luce trasmessa e riflessa, XRF, ICP-AES, ICP-MS, NAA, SEM, TEM, microanalisi EDS e WDS, XRPD, spettroscopia Raman.
- Morfologia e natura dei corpi minerari in funzione delle rocce incassanti: filoni, pipes, mantos, pods, corpi stratiformi e stratabound.
- Tessiture degli ore minerals e della ganga, implicazione per il loro trattamento (ore dressing).
- Risorse e riserve minerarie, prospezione mineraria geochimica, geofisica, core-drilling, esempi.
- **Giacimenti magmatici**: cristallizzazione frazionata, liquazione, assimilazione magmatica. Esempi: solfuri massicci nelle komatiiti di Kambalda (Australia), livelli a cromite e PGE nel Bushveld complex (Sud Africa), solfuri massicci di Fe-Ni-Cu di Norilsk (Russia), kimberliti, carbonatiti, pegmatiti, greisen, skarn.
- Giacimenti idrotermali: fattori chiave nella loro genesi, tecniche di studio. Porphyry, VMS (*volcanogenic massive sulphide*), MVT (*Mississippi Valley Type*), SEDEX (*Sedimentary Exhalative*), IOCG (Iron Oxide Copper Gold), giacimenti ad U.
- Giacimenti sedimentari: placer, BIF (banded Iron Formations), evaporiti.
- Giacimenti metamorfici: talco, grafite, silicati di Al.
- Giacimenti residuali (es. Al, Ni) ed arricchimento supergenico.
- Rocce ornamentali: classificazione commerciale, tipologie, cave a cielo aperto ed in sotterraneo, principali metodologie di coltivazione, lavorazione dei materiali lapidei, impatto ambientale e relativa mitigazione.
- Prove tecniche (fisico-meccaniche) per la caratterizzazione dei materiali lapidei e degli aggregati.

Programma esteso

Ore minerals & industrial minerals, deposito minerario, minerali utili, ganga, cubaggio, tenore, tout-vènant, mercantile, clarke e clarke di concentrazione. Diagrammi tonnellaggi - tenore. Prezzi degli ore minerals e dei metalli, classificazione commerciale. Metalli "critici": REE e PGE. Import ed export delle materie prime, la produzione lombarda. Recupero e sottoprodotti, forma mineralogica del metallo, sostanze indesiderate, processi di smelting ed ore dressing, problematiche ambientali. Classificazione normativa delle materie prime: materiali di I e II categoria, cave e miniere.

Cenni alle relazioni tra tettonica e metallogenesi dall'Archeano al Fanerozoico.

Esplosivistica civile: principali tipi di esplosivo, deflagranti e detonanti, caratteristiche tecniche. Tiro a fuoco, elettrico e NONEL. Detonatori a fuoco, elettrici, elettronici, NONEL, booster, ritardati e microritardati, esploditori. L'uso dell'esplosivo negli scavi a cielo aperto, in cave di *industrial minerals* e di rocce ornamentali; scavi in sotterraneo.

Le principali tecniche analitiche per lo studio e la caratterizzazione di materiali geologici di interesse economico ed industriale. Analisi chimiche *whole-rock*: XRF, ICP-ES, ICP-MS, NAA, pregi e limiti. Microscopia ottica in luce trasmessa e riflessa, analisi modale. Analisi mineralogiche: diffrattometria a raggi-X su polveri (XRPD). Microscopia elettronica a scansione (SEM) ed in trasmissione (TEM), microanalisi chimiche in dispersione di energia (EDS) e di lunghezza d'onda (WDS). Cenni sulla spettroscopia Raman.

Natura e morfologia dei corpi minerari: singenesi ed epigenesi, corpi discordanti e concordanti. Corpi minerari tabulari (filoni, vene), tubulari (*pipes, mantos*), disseminazioni, ammassi, corpi di sostituzione (es. *skarn*), corpi stratiformi e *stratabound*. Principali tipologie di *host rock* e rapporti con le mineralizzazioni. Tessiture e strutture dei minerali metallici e di ganga, rapporti con *ore dressing*.

Risorse e riserve minerarie, cenni di prospezione mineraria: indagini geologiche di terreno, *remote sensing*, geochimica, geofisica, sondaggi, trattamento statistico dei dati.

Classificazione genetica dei giacimenti minerari, metallogenesi, ereditarismo, permanenza, trasformismo, zoning, metallotect, epoca metallogenica e paragenesi. Giacimenti magmatici: cristallizzazione magmatica (es. diamanti nelle kimberliti, cromiti nei complessi basici stratificati, feldspati nelle pegmatiti), segregazione magmatica (cristallizzazione frazionata, liquazione). Giacimenti idrotermali: origine dei fluidi idrotermali, leganti, trasporto, deposizione, giacimenti VMS (volcanic massive sulfide), SEDEX (sedimentary-exalative), MVT (Mississippi Valley Type). Giacimenti di uranio. Giacimenti legati a processi metamorfici. Giacimenti legati a processi sedimentari (BIF banded iron formations, Cu in arenarie, placer, evaporiti). Giacimenti legati a processi di alterazione meteorica: lateriti, bauxiti. Arricchimento supergenico.

Principali ore minerals (associazioni, *ore assemblage, matrix assemblage, mining grade*): Be, Cr, Cu, Au, Fe, Pb, Zn, Li, Mn, Hg, Mo, Ni, Co, Nb, Ta, PGE (*platinum group elements*), Ag, Sn, W, Ti, U, V, REE.

Rocce ornamentali: tipologie commerciali, ciclo produttivo di cava e problematiche ambientali. Varietà commerciali: marmi, pietre e graniti. Lavorabilità delle rocce ornamentali in funzione delle caratteristiche mineralogiche e tessiturali. Principali produttori mondiali, i bacini estrattivi italiani. Cave di rocce ornamentali: indagini geologiche preliminari, tipologie di cave rispetto alla morfologia, coltivazione a cielo aperto ed in sotterraneo. Metodi di coltivazione a progressione verticale ed orizzontale. Principali tecniche di coltivazione: filo elicoidale, filo diamantato, perforazione (con e senza esplosivo), tagliatrice a catena, flame-jet, water-jet, cementi espandenti. Lavorazione dei materiali lapidei: riquadratura, taglio, sega a telaio, finitura, lavorazioni speciali. Impatto ambientale: VIA (valutazione di impatto ambientale), misure di mitigazione, recupero ambientale.

Caratterizzazione tecnica dei materiali lapidei e degli aggregati. Materiali lapidei ad uso ornamentale e

strutturale: principali prove fisico-meccaniche per la caratterizzazione tecnica delle rocce ad uso ornamentale e strutturale, legami con la mineralogia e le microstrutture. Misura della porosità mediante porosimetria a Hg. Aggregati ad uso stradale e per calcestruzzi: principali prove tecniche per la caratterizzazione di aggregati impiegati in calcestruzzi o per conglomerati bituminosi (es. Los Angeles rattle test). Caratterizzazione mineralogica, minerali indesiderati, reazioni alcali-silice.

Prerequisiti

Conoscenze di base di mineralogia, petrografia e chimica.

Modalità didattica

- 3 CFU frontali, 2 CFU di laboratorio (tecniche analitiche, prove tecniche, caratterizzazione minerali e rocce), 1 CFU di didattica *campus abroad* (visite tecniche presso cave, miniere ed impianti di lavorazione). Erogato in italiano.
- a) 12 lezioni da 2 ore in presenza, Didattica Erogativa
- b) 15 attività di laboratorio da 2 ore in presenza, Didattica Interattiva
- c) 2 uscite sul campo (Campus Abroad) da 3 ore in presenza, Didattica Interattiva

In caso di pandemie o emergenze sanitarie le lezioni si svolgeranno in modalità mista: parziale presenza (laboratorio e campus abroad) e lezioni videoregistrate asincrone.

Materiale didattico

Testi generali introduttivi

Slide del corso (disponibili su e-learning), appunti e dispense distribuiti durante il corso, testi consigliati dal docente.

Neukirchen & Ries (2020) - The World of Mineral Deposits. A Beginner's Guide to Economic Geology. Springer, 371 pp.

Sanz, Tomasa, Jimenez-Franco, Sidki-Rius (2022) - Elements and Mineral Resources. Springer, 411 pp.

Arndt & Ganino (2012) - Metals and Society. An introduction to Economic Geology. Springer, 160 pp.

Brigo & Montanari (2006) - Metalli e minerali industriali. Parametri geominerari ed economici. Aracne editrice, 394 pp.

Evans (1993) - Ore geology and industrial minerals. An introduction (III edition). Blackwell Publishing, 389 pp.

Marjoribanks (2010) - Geological methods in mineral exploration and mining. Second Edition. Springer, 238 pp.

Jackson (2019) - Earth Science for Civil and Environmental Engineers. Cambridge University Press, 458 pp.

Kesler & Simon (2015) - Mineral resources, economics and the environment (II edition). Cambridge University Press, 434 pp.

Primavori (1999) - Pianeta Pietra. Giorgio Zusi Editore, 326 pp.

Tecniche analitiche

Gualtieri (2018) - Introduzione alle tecniche analitiche strumentali. Applicazioni alla mineralogia e alla scienza dei materiali. Libreriauniversitaria.it Ed., 335 pp.

Mercurio, Langella, Di Maggio & Cappelletti (2019) - Analisi mineralogiche in ambito forense. Aracne editrice, 455 pp.

Prospezione mineraria

Dentith & Mudge (2014) - Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press, 438 pp.

Moon, Whateley & Evans (2004) - Introduction to Mineral Exploration, II ed. Blackwell publishing, 481 pp.

Periodo di erogazione dell'insegnamento

II semestre

Modalità di verifica del profitto e valutazione

Prova scritta preliminare, costituita da un test a risposte chiuse (10 quesiti) e 3 semplici esercizi. Ogni risposta corretta, in funzione della complessità dell'argomento, permette di ottenere da 1 a 3 punti (punteggio massimo complessivo pari a 30/30). Viene valutata la correttezza delle conoscenze e la capacità di elaborare informazioni. Il voto dell'esame scritto incide per il 50% sul voto finale.

La successiva prova orale consiste in un colloquio sugli argomenti svolti a lezione (da 3 a 4 domande aperte). Vengono valutate la chiarezza espositiva, l'uso di un linguaggio appropriato e la capacità di estendere a casi reali concetti teorici. Il voto dell'esame orale contribuisce per il 50% al voto finale.

Orario di ricevimento

Lunedì dalle 10:30 alle 12:30 o su appuntamento (edificio U4, I piano, stanza 1027).

Sustainable Development Goals

ENERGIA PULITA E ACCESSIBILE | IMPRESE, INNOVAZIONE E INFRASTRUTTURE | CONSUMO E PRODUZIONE RESPONSABILI

