

COURSE SYLLABUS

Design and Analysis of Algorithms

2526-3-E3101Q113

Aims

Students will acquire knowledge of the main techniques for the design and analysis of algorithms and the ability to
identify the most appropriate algorithmic techniques to efficiently solve specific computational problems.

Knowledge and understanding

This course provides basic knowledge and understanding on:

Dynamic Programming (DP) algorithmic technique for solving combinatorial optimization problems
paradigmatic algorithms for combinatorial optimization problems over sequences, sets, and graphs
(Longest Common Subsequence, Weighted Interval Scheduling, ..., and their variants) based on the
dynamic programming technique, optimal substructure property
Greedy algorithmic tecnique for solving combinatorial optimization problems
Disjoint-set data structure and computational complexity of the related algorithms on the basis of the
representation of the data structure and the way of implementing its operations.
Algorithms for computing minimum spanning trees (Kruskal and Prim algorithms)
Algorithms for computing shortest path on graphs (Floyd-Warshall and Dijkstra algorithms)
direct-address tables and Hash tables
the classes P, NP and NP-complet problems
reducibility between problems

Ability to apply knowledge and understanding

Ability to solve combinatorial optimization problems (and their decision versions) over sequences, sets, and graphs
by the dynamic Programming technique, being able to:

define the sub-problems, the related coefficients (variables) data structure for storing them,
reformulate the problem in recursive terms providing the base case and recursive step of the recurrence
equations

provide the optimal value of the problem on the basis of the values of all coefficients
design an efficient bottom-up algorithm for computing the values of all coefficients and the optimal value
design an efficient algorithm for reconstructing a solution to the problem (subsequence, subset or paths of
optimal value)

Ability to understand whether and when the greedy technique can be successfully employed for solving a
combinatorial optimization problem.

Abilty to use disjoint-set data structure as far as graph algorithms are concerned.

Ability to build the instance of a problem starting from the instance of the problem from which the former has been
reduce.

Making judgements

Ability to identify the most suitable algorithmic technique and data structures for efficiently solving specific
computational problems.

Communication skills

Ability to explain in a clear and rigorous way, the theoretical contents, the algorithmic techniques and the algorithms
discussed, including the proofs.

Learning Skills

Ability to independently search for and learn new algorithms and data structures to solve computational problems.
Tackle new computational problems.

Contents

The course will introduce the main algorithmic techniques (dynamic programming, greedy), with particular attention
to the efficiency of the algorithms, with the main analysis methods. The main algorithms for several combinatorial
optimization problems, especially over sets, sequences, and graphs will be presented, including minimum spanning
trees construction and shortest path problems.

Detailed program

1. Mathematical tools (review)

Growth of functions, asymptotic notations
Execution time of iterative algorithms
Recursion and recursive algorithms
Recurrence equations and Execution times of recursive algorithms

2. Algorithmic Techniques: Dynamic Programming (DP)

Introductory examples
Main features - Recursion and optimal substructure property
Implementation with matrices

Combinatorial optimization problems over sequences, sets and graphs. Decision Variants. Optimal
substructure property
Resolution by: definition of coefficients (variables) associated with the sub-problems and related data
structure for storing them, formulation of recurrence equations (base case and recursive step) for computing
the values of all coefficients, identification of the optimal value on the basis of the values of all coefficients,
bottom-up algorithm for computing the values of all coefficients and the optimal value, algorithm for
reconstructing a solution to the problem (subsequence, subset or paths of optimal value).

3. Algorithmic Techniques: Greedy method

Introductory examples
Similarities and differences with the dynamic programming technique
Independence systems and Matroids
Optimization (maximum/minimum) problem associated with a weighted independence system and related
greedy algorithm
Rado Theorem
Graphic Matroid

4. Disjoint-set data structure

Definitions and operations
Linked list representation and forest representation

5. Minimum spanning trees

Generic algorithm
Kruskal algorithm
Prim algorithm

6. Shortest path problems

Dijkstra Algorithm
Floyd-Warshall Algorithm

7. Hash Tables

Direct-address tables
Hash tables

8. Introduction to NP-completeness and reducibility

The class P, NP and NP-complet problems
Reducibility between problems: reducibility notion and various examples.

Prerequisites

Basic notions of programming, algorithms and data structures

Teaching form

Lectures, practice exercises, and classroom laboratory exercises all in presence.

Lectures (32h) will be carried out in unidirectional lecture mode.
Practice exercises and classroom laboratory exercises acivities (20h+24h) will be carried out with an initial part in
unidirectional mode and a second part in interactive mode.

The course is in Italian.

Textbook and teaching resource

T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduzione agli Algoritmi e Strutture dati, Ed. Mc. Graw Hill

Further material and exercises are available through the e-learning website.

Semester

First semester

Assessment method

Written examination: It consitsts of

- exercises related to the main topics

- open questions on the theoretical aspects of the topics explained in the course

The maximum total score deriving from exercises and open questions is 31 points.
The exam is passed only if the final score is at least equal to 18.
3 additional points may be assigned (related to an optional exercise/open question).
The final score will just correspond to the usual score expressed in thirtieths (30 e lode if the final score is greater
than 30).

Partial written examinations:
The written exam can be substituted by two partial written examinations in the middle and at the end of the course.

Each partial written examination is about the topics of the corresponding part of the course and it consists of
exercises to the main topics and open questions on the related theoretical aspects.

Each partial written examination has a maximum score of 31/31: the final score of the exam is the average of the
two partial scores. The exam is passed only if the score of each partial examination is greater than 14 and the final
score is at least equal to 18.
3 additional points may be assigned (related to an optional exercise/open question).

The final score will just correspond to the usual score expressed in thirtieths (30 e lode if the final score is greater
than 30).

Office hours

By appointment

Sustainable Development Goals

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

