

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Languages and Computability

2526-2-E3101Q111

Obiettivi

Conoscenza e capacità di comprensione

Gli studenti apprenderanno gli elementi della teoria dei linguaggi formali e le sue relazioni con l'analisi lessicale e sintattica, incluse quelle rilevanti nei linguaggi di programmazione.

Conoscenza e capacità di comprensione applicate

Gli studenti saranno in grado di definire grammatiche regolari e libere dal contesto che sono necessarie per l'utilizzo di analizzatori lessicali e sintattici. Inoltre acquisiranno la capacità di utilizzare analizzatori in contesti pratici.

Autonomia di giudizio

Gli studenti acquisiranno la capacità di valutare quale grammatica utilizzare per descrivere diversi linguaggi.

Abilità comunicative

La grande attenzione posta sugli aspetti formali permetterà agli studenti di comprendere l'importanza di una comunicazione non ambigua, utilizzando la terminologia corretta per esprimere le nozioni e i concetti appresi.

Capacità di apprendere

La formalizzazione dei concetti faciliterà i meccanismi di apprendimento deduttivo. Inoltre, l'esposizione di esempi ed esercizi svolti alla lavagna, subito dopo aver spiegato una tecnica o un algoritmo, consentirà di chiarire eventuali dubbi e casi particolari.

Contenuti sintetici

Automi a stati finiti, linguaggi regolari e espressioni regolari. Linguaggi e grammatiche libere da contesto e automi a pila. Elementi di computabilità: la macchina di Turing; la tesi di Church-Turing; la macchina di Turing Universale.

Problemi non risolvibili. Analizzatori lessicali e sintattici.

Programma esteso

- 1. Introduzione ai contenuti del corso. I concetti matematici di base per la teoria degli automi
- 2. Automi a stati finiti deterministici. Automi a stati finiti non deterministici. Un'applicazione: ricerche testuali. Automi a stati finiti con epsilon-transizioni
- 3. Espressioni regolari. Automi a stati finiti ed espressioni regolari
- 4. Proprietà del linguaggi regolari. Pumping Lemma per dimostrare che un linguaggio (non) è regolare. Chiusura di linguaggi regolari rispetto ad operazioni booleane. Equivalenza e minimizzazione di automi
- Grammatiche. Grammatiche Libere dal Contesto. Alberi sintattici. Applicazioni delle Grammatiche Libere dal Contesto. Ambiguità nelle Grammatiche e nei Linguaggi. Pumping Lemma per Grammatiche Libere dal Contesto
- 6. Macchine di Turing. Problemi che i computer non possono risolvere. Definizione di Macchina di Turing. Estensioni alla Macchina di Turing. Macchine di Turing ridotte
- 7. Computabilità. Linguaggi non Ricorsivamente Enumerabili. Linguaggi Ricorsivamente Enumerabili e Ricorsivi. Problemi indecidibili relativi alle Macchine di Turing
- 8. Analizzatori lessicali e sintattici. Algoritmi di Parsing.

Prerequisiti

I contenuti degli insegnamenti del primo anno

Modalità didattica

28 lezioni da 2 ore svolte in aula, in modalità erogativa, in presenza.

4 esercitazioni da 3 ore svolte in laboratorio, in modalità erogativa nella parte iniziale che è volta a coinvolgere gli studenti in modo interattivo nella parte successiva. Tutte le attività sono svolte in presenza.

Il corso è erogato in italiano.

Sulla piattaforma di eLearning (Moodle) verranno resi disponibili, settimanalmente, degli esercizi di autovalutazione.

Materiale didattico

Libro di testo:

- J.E. Hopcroft, R. Motwani, J.D. Ullman, Automi, linguaggi e calcolabilità, Addison Wesley
- Keith D. Cooper, Linda Torczon, Engineering a Compiler (Third Edition), Morgan Kaufmann

Materiale fornito sulla piattaforma di e-learning

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

La verifica dell'apprendimento comprende una prova scritta e un colloquio orale.

Nella prova scritta si richiede di svolgere alcuni esercizi simili a quelli svolti a lezione e presenti sul supporto elearning del corso, e di rispondere ad alcune domande aperte sulla teoria della computabilità. L'obiettivo di valutazione della prova scritta consiste nel controllo intensivo della preparazione su alcuni argomenti fondamentali del programma d'esame, e nel controllo delle competenze di problem solving disciplinare.

Durante il corso, sono previste due prove scritte in itinere. Tali prove hanno lo stesso formato e gli stessi obiettivi della prova scritta, e vertono rispettivamente sulla prima metà e sulla seconda metà del programma dell'insegnamento.

Si è ammessi al colloquio orale se è stata superata la prova scritta oppure entrambe le prove in itinere, e se sono stati consegnati gli esercizi relativi al laboratorio, così come specificato nella pagina Web del corso sulla piattaforma di eLearning (Moodle). L'obiettivo degli esercizi di laboratorio è valutare la capacità dello studente di applicare alcuni degli argomenti del corso a un problema pratico. Al colloquio orale, oltre alla discussione dello scritto, vengono fatte domande sugli argomenti del corso. L'obiettivo del colloquio orale è valutare la capacità dello studente di esporre gli argomenti del corso, e di effettuare brevi ragionamenti su di essi.

La valutazione è complessiva e viene definita al termine del colloquio orale.

Orario di ricevimento

Su appuntamento

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ