

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Artificial Vision

2526-2-F9102Q046

Aims

Provide a robust understanding of some significant problems in computer vision and solutions, in particular for (autonomous or quasi-autonomous) cyberphysical systems

Contents

Introduction to computer vision for (autonomous) cyberphysical systems.

Detailed program

- Geometry of image formation (cameras are bearing-only sensors)
- Calibration of the projection parameters
- Technological aspects of image formation
- Model-based vision (monocular object recognition and localization)
- 3D reconstruction of points by leveraging more than one image at the same time (stereoscopy)
- 3D reconstruction of points by leveraging more than one image at different time instants (optical flow, feature tracking, structure from motion)
- Sensors capable to natively give out depth information: LiDARs and 3D cameras, both structured light and ToF
- Depth from monocular DNN-based techniques
- Bayesian discrete time filtering (Kalman, EKF, UKF, gaussian mixtures, IF, histogram, particle)
- Panoptic (semantic multi-instance) segmentation of images
- Observer localization problem, classical techniques and DNN-based techniques
- SLAM (Simultaneous Localization and Mapping) problem and its sub-problems (incremental SLAM, loop

detection, relocation, loop closure), classical techniques and DNN-based techniques

Prerequisites

Linear 3D geometry (lines, planes). Linear algebra. Digital image processing. Deep Neural Networks.

Teaching form

Classes and practices, both programming and hands-on.

The scheduled activities are: 32 hours of lessons in dispensing mode and/or in interactive mode, 24 hours of laboratory in interactive mode.

Textbook and teaching resource

- Selected parts from well-known textbooks like, e.g.,
- David A. Forsyth and Jean Ponce, "Computer Vision: A Modern Approach" 2nd edition, Pearson, 2012
- Andrea Fusiello, "Computer Vision: Three-dimensional Reconstruction Techniques", Springer 2024
- Emanuele Trucco, Alessandro Verri, "Introductory techniques for 3D Computer Vision", Prentice Hall, 1998
- Other material, like e.g., tutorials, review papers, etc. for the less consolidated parts.

Semester

1st semester

Assessment method

Oral exam

Office hours

Please, send an email for arranging an appointment.

Sustainable Development Goals

SUSTAINABLE CITIES AND COMMUNITIES | RESPONSIBLE CONSUMPTION AND PRODUCTION