

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Adaptive Optics

2526-1-F1702Q010

Obiettivi

Fornisce una formazionespecialistica in tecniche ottiche avanzate per migliorare la diagnosi e il trattamento delle malattie oculari. Il corso tratterà i principi e le applicazioni dell'ottica adattiva, concentrandosi su come queste tecnologie possano migliorare la risoluzione e l'accuratezza dell'imaging oftalmico. Gli argomenti includono il rilevamento e la correzione del fronte d'onda, l'imaging della retina e l'integrazione dell'ottica adattiva nella pratica clinica. L'obiettivo è quello di fornire agli optometristi e specialisti in scienza della visione le conoscenze e le competenze per sfruttare strumentazione basata su ottica adattica per miglioare la diagnosi dei loro pazienti.

Contenuti sintetici

Cenni di Ottica Fisica:

i propagatori (Fresnel, Fraunhofer, Angular spectrum)

- Esempi in ottica di Fourier: l'algoritmo olografico per generare stimoli visivi
- Descrizione delle aberrazioni ottiche: aberrazioni di Seidel del primo ordine
- Strumenti di ottica adattiva I: specchi deformabili.
- Strumenti di ottica adattiva II: modulatori di luce spaziale (algoritmo di Gerchberg-Saxton)
- Correzioni di aberrazioni ottiche e descrizione di Zernike.
- Applicazioni dell'ottica adattiva per i test della vista: imaging della retina

Programma esteso

 Revisione delle basi dell'ottica fisica. Il concetto di propagatore. Analisi dell'origine dei tre principali metodi di propagazione (Fresnel, Fraunhofer, Angular spectrum) e analisi dei loro limiti di applicazione. Esempi, esercizi (numerici).

- Principi base dell'ottica di Fourier: Sviluppo di alcuni esempi relativi al metodo olografico di per generare stimoli visivi sulla retina.
- Descrizione delle aberrazioni ottiche: aberrazioni di Seidel del primo ordine e aberrazioni del secondo ordine con ottiche geometriche. Analisi delle aberrazioni del primo ordine con la propagazione delle onde.

Metodi per la correzione delle aberrazioni ottiche:

- Adaptive optics tools I: deformable mirrors.
- Adaptive optics tools II: spatial light modulators (the Gerchberg-Saxton algorithm)
- Metodi per descrivere le aberrazioni ottiche (con particolare attenzione alla descrizione di Zernike).
- Applicazioni dell'ottica adattiva per i test visivi. Analisi di due principali oftalmoscopi AO e loro applicazioni all'imaging della retina (https://www.imagine-eyes.com/)
- Ruolo dell'ottica adattiva nello studio dell'accomodazione, in particolare: comprensione dell'accomodazione, valutazione del miglioramento della vista, applicazioni nella pratica clinica.
- Come sfruttare l'imaging ad alta risoluzione assistito da AO per diagnosticare la perdita di vista

Prerequisiti

Algebra and geometry introdcutory calcolus, derivatives and integrals basics of Python or MatLab coding.

Modalità didattica

Lezioni frontali con proposizione di problemi in aula. Assegnazione di problemi a casa che vanno a comporre una prevalutazione di esame.

Uso di simulazioni numeriche e animazioni. Proposizione di casi reali. Le lezioni, la risoluzione di problemi e le simulazioni saranno integrate.

La partecipazione degli studenti è incoraggiata attraverso la risoluzione dei problemi.

Prospetto sintetico:

- Numero di ore di lezione in presenza: 28;
- numero di ore interattive a distanza: 14.

Materiale didattico

Optical Imaging and Aberrrations, Virendra Mahajan, SPIE press, 1998. Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications. Edited by Jason Porter, Hope M. Queener, Julianna E. Lin, Karen Thorn, And Abdul Awwal Wiley Scientific, 2006.

Periodo di erogazione dell'insegnamento

Modalità di verifica del profitto e valutazione

LA VALUTAZIONE FINALE CONSISTE IN CINQUE FASI:

- 1- Presentazione, almeno una settimana prima della data dell'esame, di un elaborato sviluppato dallo studente su un tema indicato dal docente e secondo una scheda di valutazione fornita dal docente.
- 2 risposta a un set di non piuì di 10 domande scritte (risposte chiuse e aperte) sul programma del corso per una verifica generale della preparazione sul programma del corso.
- 3- Discussione orale dell-elaboprato
- 4- Discussione orale delle domande aperte.

Le fasi 1 e 2 saranno svolte prima della data dell'esame. Le fasi 3-4 saranno svolte il giorno dell'esame.

Le fasi da 1 a 2 daranno un PUNTEGGIO SCRITTO espresso su trenta. lo studente può migliorare fino a 4 punti il PUNTEGGIO SCRITTO con le fasi 3 e 4.

FASE 1: sarà valutato con un unico voto espresso su trenta (il voto "articolo"), ottenuto sommando i seguenti punteggi:

da 0 a 5 punti: Lo studente affronta in modo chiaro qual è il tema principale della richeista fatta nell-elaborato?

Da 0 a 5 punti: lo studente affronta in modo chiaro la metodologia?

Da 0 a 5 punti: lo studente affronta correttamente i principi fisici della metodologia?

Da 0 a 5 punti: I risultati principali sono riassunti in modo chiaro?

Da 0 a 5 punti: i risultati grafici sono interpretati in modo corretto e chiaro?

Da 0 a 5 punti: La terminologia utilizzata nella relazione è in generale corretta?

FASE 2: per ciascuno delle domande aperte, i seguenti aspetti saranno valutati con un unico voto (voto "problemi") espresso su trenta, ottenuto sommando i seguenti punteggi:

da 0 a 6 punti: lo studente ha compreso correttamente il testo?

da 0 a 6 punti: lo studente ha indicato chiaramente i principi da utilizzare?

Da 0 a 6 punti: lo studente applica correttamente i principi per ottenere le equazioni per la soluzione?

Da 0 a 6 punti: il risultato numerico, ove previsto, è corretto?

Da 0 a 6 punti: lo studente commenta correttamente i risultati ottenuti e, se necessario, li rappresenta correttamente in forma grafica?

Fase 3: sarà valutato con un voto (il voto del "test") espresso su trenta (il voto è pari al numero di risposte corrette, poiché il test è composto da 30 domande).

Il PUNTEGGIO SCRITTO sarà la media dei tre voti precedenti, arrotondata al numero intero più vicino.

Le fasi 3 e 4 contano al massimo altri 4 punti da aggiungere al PUNTEGGIO SCRITTO per ottenere il PUNTEGGIO FINALE.

Orario di ricevimento

through the webex page https://unimib.webex.com/meet/giuseppe.chirico Every Monday, 13.00-14.00.

Sustainable Development Goals

SALUTE E BENESSERE