

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Photochemistry

2526-2-F5401Q032

Obiettivi

Il corso si propone di fornire agli studenti una visione di insieme dei processi che coinvolgono l'interazione tra la luce e i sistemi chimici.

Conoscenze e capacità di comprensione. Al termine del corso lo studente conosce e comprende gli aspetti della interazione tra le molecole e la radiazione elettromagnetica, le caratteristiche degli stati eccitati elettronici ed i loro processi di decadimento. Conosce inoltre le strumentazioni usate per lo studio delle specie e dei processi fotochimici ed applica le conoscenze a sistemi naturali e artificiali fotochimicamente attivi.

Conoscenze e capacità di comprensione applicate. Al termine del corso lo studente

- è in grado di collocare nell'ambito teorico rappresentato dalla regola d'oro di Fermi i diversi processi di decadimento degli stati eccitati elettronici discussi in vari ambiti di applicazione;
- ha acquisito la familiarità di tecniche spettroscopiche e di sintesi chimica di rilevanza fotochimica.

Autonomia di giudizio. Al termine del corso lo studente è in grado di valutare quale sia il processo di decadimento attivo in un dato fenomeno di natura fotochimica con contestuale sviluppo di progettualità riguardo alla metodologia di indagine.

Abilità comunicative. Capacità di comunicare in forma orale e capacità di sostenere un contraddittorio sulla base di un giudizio sviluppato autonomamente su una problematica inerente la fotochimica.

Capacità di apprendere. Essere in grado di applicare le conoscenze acquisite a contesti differenti da quelli presentati durante il corso, e di comprendere gli argomenti trattati nella letteratura scientifica riguardante i fenomeni di decadimento degli stati elettronici molecolari eccitati.

Contenuti sintetici

Il corso parte con una trattazione dei fondamenti della fotochimica quali i processi di evoluzione e decadimento degli stati eccitati elettronici e la fotoreattività, contenuti indispensabili per la comprensione di fenomeno fotochimico e fotofisico. Successivamente verranno presentate alcune applicazioni in ambito fotobiologico, nella fotocatalisi e nella luminescenza.

Programma esteso

Stati eccitati elettronici e loro descrizione dell'ambito del modello degli orbitali molecolari. Diagramma di Jablonski, scala dei tempi e probabilità nell'ambito della regola d'oro di Fermi dei fenomeni di decadimento degli stati eccitati elettronici. Concetto di tempo di vita di uno stato eccitato e resa quantistica. Fenomeni di trasferimento di energia e meccanismi di tipo Förster e Dexter. Trasferimento elettronico nell'ambito della teoria di Marcus. Processi redox che coinvolgono stati eccitati elettronici ed equazione di Rehn-Weller. Sistemi antenna e photosensitizers. Reattività fotochimica in ambito organico ed inorganico. Splitting dell'acqua: dal sistema naturale ai sistemi sintetici. Fotocatalisi e applicazioni fotocatalitiche: produzione di H2 e riduzione della CO2 light-assisted. Sistemi accoppiati superficie-photosensitizers: il caso del sistema TiO2-sensitizers. Foto- e chemiluminescenza: applicazioni.

Prerequisiti

Conoscenze di base di meccanica quantistica (Operatore hamiltoniano molecolare; Equazione di Schroedinger per sistemi atomici e molecolari, metodo variazionale e calcolo dei valori di aspettazione di un operatore, approssimazione di Born-Oppenheimer)

Modalità didattica

24 lezioni da 2 ore in presenza, Didattica Erogativa

Materiale didattico

Testi consigliati:

"Photochemistry and Photophysics. Concepts, Research, Applications" Vincenzo Balzani, Paola Ceroni e Alberto Juris. Wiley 2014

"Principles and Applications of Photochemistry", Brian Wardle, Wiley 2009;

"Principles of Modern Molecular Photochemistry: an introduction" Nicholas J. Turro, University Science Book (2008)

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

Colloquio orale individuale durante il quale vengono verificati il livello delle conoscenze acquisite in termini di autonomia di analisi e giudizio, capacità di valutazione critica dei contenuti sviluppati durante l'insegnamento e capacità di collegamento anche con i contenuti di altri insegnamenti. Valutazione: 18-30/30 con eventuale lode.

Orario di ricevimento

Ricevimento previo appuntamento via email

Sustainable Development Goals

ENERGIA PULITA E ACCESSIBILE