

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Quantum Electronics

2526-2-FSM01Q028

Obiettivi

Il corso si propone di fornire le nozioni fondamentali sulle interazioni tra radiazione elettromagnetica e materia a livello atomico e molecolare. Si approfondisce come la meccanica quantistica influenzi il comportamento degli elettroni e di altri portatori di carica in dispositivi e sistemi elettronici. Gli stati elettronici di materiali e dispositivi saranno studiati attraverso la discussione delle loro architetture e la misurazione delle proprietà ottiche, elettroniche e magnetiche, al fine di comprendere le potenziali applicazioni dei materiali quantistici nelle tecnologie quantistiche.

I risultati attesi al termine dell'insegnamento sono:

1. Conoscenza e capacità di comprensione

Gli studenti acquisiranno conoscenze nell'ambito dei materiali e dei fenomeni quantistici emergenti dal confinamento della materia lungo una o più direzioni nello spazio, e dei metodi per la preparazione e caratterizzazione di dispositivi che permettano di sfruttare tali fenomeni nell'elettronica per le tecnologie quantistiche.

2. Conoscenza e capacità di comprensione applicate

Competenze nell'ambito delle tecniche per la caratterizzazione di materiali e dei metodi per la realizzazione di dispositivi per la spintronica, sensoristica e computazione quantistica.

3. Autonomia di giudizio

Gli studenti acquisiranno capacità di giudizio nell'individuare le proprietà chiave dei materiali che permettono lo sviluppo di dispositivi avanzati e performanti sapendo distinguere potenzialità e limitazioni.

4. Abilità comunicative

Gli studenti acquisiranno la terminologia e il linguaggio necessari per saper descrivere le proprietà di materiali avanzati per la elettronica quantistica e dei metodi di preparazione e realizzazione di dispositivi in nanotecnologia.

5. Capacità di apprendere

Gli studenti acquisiranno gli strumenti che gli permetteranno di continuare lo studio in modo autonomo attraverso l'utilizzo di metodi di indagine per lo studio e la ricerca di materiali e dispositivi avanzati.

Contenuti sintetici

- Introduzione: Elettronica per le moderne tecnologie quantistiche
- Trasporto quantistico in strutture a bassa dimensionalità
- Spintronica
- Metodi per la generazione e la manipolazione della radiazione ottica coerente e delle microonde (con laboratorio)
- Funzionalità emergenti: magnetismo topologico

Programma esteso

INTRODUZIONE

• Dispositivi elettronici per le moderne tecnologie quantistiche. Panoramica dei prerequisiti del corso, contenuti delle lezioni, libri di testo/letteratura e metodi di valutazione.

TRASPORTO QUANTISTICO

- Meccanismo di conduzione in sistemi a bassa dimensionalità. Resistore elastico. Regime lineare. Trasporto balistico, diffusivo e quasi-balistico.
- Formalismo generale per la conduttività. Resistenza di interfaccia quantistica. Due visioni della conduttività. Equazione di Boltzmann.
- Regole di progettazione per un nanotransistor efficiente.
- Conduttanza quantizzata. Contatto Quantistico di Punto (CQP). Formalismo di Buttiker-Landauer.
- Effetto Hall quantistico intero e frazionario. Grafene.
- Effetto tunnel coerente e incoerente in una doppia barriera.
- Transistor a singolo elettrone: teoria, funzionamento e applicazioni. Rilevamento della carica con QPC: elettrometro.

METODI PER LA GENERAZIONE E LA MANIPOLAZIONE DI RADIAZIONE OTTICA COERENTE E MICROONDE

- Principio dell'emissione laser e della generazione di brevi impulsi.
- Risonatori ottici, guide d'onda e circuiti integrati.
- Emettitori e maser a microonde; Cavità a radiofrequenza.
- Esperienze di laboratorio.

METODI PER LA GENERAZIONE, RILEVAZIONE E MANIPOLAZIONE DI SPIN

- Spin in un punto quantico. Spettroscopia degli stati eccitati. Transizione S-T indotta da campo magnetico. Filtro di spin bipolare. Metodi di conversione da spin a carica.
- Non-demolizione quantistica con doppi punti quantici. Diagramma di stabilità della carica. Rilevamento della carica con doppi punti quantici.
- Spin in due doppi punti quantici. Blocco dello spin di Pauli. Meccanismi di decoerenza dello spin.
- Risonanza di spin elettronico. Metodi per la manipolazione a microonde, elettrica e ottica degli spin elettronici.
- Manipolazione ottica dello spin elettronico con centri NV nel diamante.

DISPOSITIVI E APPLICAZIONI IN SPINTRONICA

• Teoria della conduzione nelle strutture a strati magnetici. Trasporto di spin attraverso interfacce.

- Effetti della magnetoresistenza: Magnetoresistenza anisotropica (AMR). Magnetoresistenza gigante (GMR). Magnetoresistenza a effetto tunnel. Giunzioni a tunnel magnetico.
- Rilevamento e manipolazione elettrica dello spin con valvole di spin laterali.
- Memoria magnetica ad accesso casuale universale (MRAM).
- Coppia di trasferimento di spin (STT). Inversione della magnetizzazione con nanofili.
- Transistor di spin Datta-Das.

FUNZIONALITÀ EMERGENTI: MAGNETISMO TOPOLOGICO

- Topologia nella materia condensata e conduzione chirale.
- Effetti magnetoelettrici topologici e spintronica topologica.
- Domini magnetici e skyrmioni di tipo Néel e di tipo Bloch.

Prerequisiti

Corsi sui concetti di base della meccanica quantistica, della fisica dei semiconduttori e della fisica dello stato solido (o equivalenti).

Modalità didattica

26 lezioni da 2 ore in presenza, Didattica Erogativa

4 ore per esperienze di laboratorio.

Le lezioni teoriche frontali e di esercitazione saranno svolte con l'ausilio di presentazioni e/o lavagna.

Materiale didattico

- 1. Datta S. (2013) Electronic transport in mesoscopic systems, Cambridge University Press
- 2. T. Shinjo (2009), Nanomagnetism and Spintronics, Elsevier
- 3. J. Sto?hr and H.C. Siegmann (2006) Magnetism: from fundamentals to nanoscale dynamics. Springer, Berlin
- 4. Orazio Svelto (2007), Principle of Lasers (Fourth Edition), Springer, Berlin Ulteriori riferimenti verranno forniti durante le lezioni. Le presentazioni saranno messe a disposizione degli studenti attraverso la presente piattaforma e-learning.

Periodo di erogazione dell'insegnamento

Primo semestre (da settembre a gennaio)

Modalità di verifica del profitto e valutazione

Le conoscenze degli studenti verranno valutate attraverso una prova orale incentrata sugli argomenti trattati

durante il corso con presentazione di analisi quantitative, equazioni, grafici e schemi.

La competenza e i criteri di valutazione si baseranno sulle conoscenze e sulle capacità comunicative acquisite nell'ambito degli argomenti studiati. Non sono previste prove parziali.

Orario di ricevimento

Dal lunedì al venerdì in qualsiasi orario di lavoro (è opportuno concordare appuntamento con il docente tramite email).

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ | IMPRESE, INNOVAZIONE E INFRASTRUTTURE