

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Algebra Lineare

2526-1-E4104B001

Obiettivi formativi

L'obiettivo del corso è quello di presentare i risultati di base dell'algebra lineare che sono fondamentali e propedeutici ai corsi di Calcolo delle Probabilità e Analisi statistica multivariata.

In particolare, gli obiettivi formativi descritti nei termini dei **Descrittori di Dublino**, saranno:

- 1. Conoscenza e capacità di comprensione (**knowledge and understanding**): Lo studente acquisirà una conoscenza chiara e sistematica dei principali concetti di algebra lineare: rappresentazione di spazi vettoriali, sistemi di generatori e basi, applicazioni lineari e loro relazione con matrici e sistemi lineari, proiezioni ortogonali, ruolo degli autovalori e autovettori di una matrice
- 2. Capacità di applicare conoscenza e comprensione (applying knowledge and understanding): Lo studente sarà in grado di applicare i metodi appresi alla risoluzione di esercizi e problemi, anche in contesti applicativi semplici, mostrando padronanza delle tecniche di calcolo e comprensione delle strutture matematiche di base. Saprà studiare applicazioni lineari mediante la teoria delle matrici e dei sistemi lineari, determinare la miglior approssimazione di un elemento di uno spazio vettoriale tra gli elementi di un suo sottospazio, applicare la procedura di diagonalizzazione di matrici
- Autonomia di giudizio (making judgements): Lo studente svilupperà la capacità di comprendere e valutare criticamente definizioni, enunciati e dimostrazioni, riconoscendo gli strumenti concettuali più adatti per l'analisi e la risoluzione dei problemi proposti.
- 4. Abilità comunicative (**communication skills**): Lo studente saprà esporre i concetti fondamentali del corso con chiarezza e rigore, utilizzando correttamente il linguaggio matematico.
- 5. Capacità di apprendere (**learning skills**): Lo studente svilupperà le competenze necessarie per proseguire in autonomia lo studio dell'algebra lineare, con capacità di consultazione di testi scientifici e risorse didattiche adeguate.

L'insegnamento consente allo studente di acquisire solide basi nell'uso della algebra lineare necessarie in qualsiasi contesto lavorativo e che rappresentano una base imprescindibile per il proseguimento del percorso universitario

Contenuti sintetici

- Sistemi lineari e matrici
- Spazi vettoriali e applicazioni lineari
- · determinanti;
- simitudine di matrici e diagonalizzazione
- proiezioni ortogonali
- congruenza di matrici e forme quadratiche

Programma esteso

- 1. Sistemi lineari e loro risoluzione.
- 2. Algebra delle matrici. Prodotto tra matrici. Invertibilità di una matrice. Rango di una matrice.
- 3. Spazi vettoriali su R. Combinazioni lineari ed indipendenza. Sistemi di generatori e basi. Dimensione di uno spazio vettoriale.
- 4. Applicazioni lineari. Studio di applicazioni lineari mediante matrici e sistemi lineari. Teorema di nullità più rango.
- 5. Determinante e suo calcolo.
- 6. Autovalori e autovettori. Diagonalizzabilità.
- 7. Forme bilineari e prodotti scalari. Basi ortonormali. Proiezioni ortogonali.
- 8. Teorema spettrale e congruenza di matrici
- 9. Forme quadratiche.
- 10. Applicazioni alla statistica

Prerequisiti

Nessun prerequisito formale richiesto.

Metodi didattici

48 ore di lezione svolte in modalità erogativa, in presenza (6 cfu). Lezioni frontali classiche, dedicate in parte agli aspetti teorici del corso, e in parte allo svolgimento di esercizi pratici, che consentono allo studente di acquisire un metodo e un'impostazione logica nella risoluzione dei problemi. Per fare esercizi a casa e ad esame verrà usata una piattaforma informatizzata.

Modalità di verifica dell'apprendimento

L'esame consiste in una prova scritta informatizzata più una eventuale prova orale. La prova d'esame consiste sia di esercizi simili a quelli visti nella piattaforma online di esercizi a casa, sia di quesiti a contenuto più teorico. La prova è informatizzata, ma la risposta ad alcune tipologie di domande/esercizi può essere richiesta anche su carta. La durata della prova è di 2 ore e durante non è consentito l'utilizzo di libri di testo o appunti e dispense. L'uso di calcolatrici programmabili non è consentito.

La prova orale **non** è obbligatoria per tutti.

- Gli studenti che ottengano nella prova scritta una votazione di 16 o meno dovranno tornare ad un appello successivo.
- La prova orale è *obbligatoria* per coloro che ottengano nella prova scritta una votazione compresa tra 17 e 19 (estremi inclusi).
- La prova orale è facoltativa per chi ottenga un voto nella prova scritta maggiore o uguale a 27: questi studenti possono scegliere se accettare una votazione di 27 oppure sostenere una prova orale al fine di ottenere una votazione maggiore (fermo restando che la prova orale, se insoddisfacente, può portare ad un abbassamento della votazione finale o ad una insufficienza). In pratica se uno studente ottiene 28 nella prova scritta può decidere di verbalizzare il voto senza sostenere la prova orale: in tal caso verrà registrato il voto 27. Altrimenti, lo studente può decidere di sostenere una prova orale: a seconda dell'andamento della prova orale il voto 28 può essere abbassato (fino ad una eventuale insufficienza), confermato, o alzato.
- Per chi prenda almeno 17 nella prova scritta: la prova orale deve essere sostenuta in tutti quei casi che venga richiesta o dal docente o dallo studente (che intenda migliorare il voto dello scritto). Ad esempio, uno studente prende 24 nella prova scritta e potrebbe quindi saltare la prova orale, ma decide di farla per migliorare il proprio voto.
- La prova orale, ove prevista, va sostenuta nello stesso appello della prova scritta. In ogni caso l'esame finisce nell'appello in cui venga svolta la prova scritta.

Durante il periodo del corso sarà possibile gli studenti potranno fare pratica sul sistema informatizzato da casa propria e, nel caso che svolgano tutti gli esercizi nel periodo previsto, potranno accumulare fino a 2 punti di bonus. Questo bonus si aggiungerà al voto dell'esame scritto, permettendo agli studenti di avere un voto migliorato nello scritto.

Testi di riferimento

- 1. Schlesinger E., Algebra Lineare e Geometria, Zanichelli, 2017 (seconda edizione)
- 2. Fioresi R., Morigi M., Introduzione all'Algebra Lineare, Casa Editrice Ambrosiana, 2021 (seconda edizione)
- 3. Appunti delle lezioni disponibili sul sito di elearning del corso.

Periodo di erogazione dell'insegnamento

Il semestre, III e IV ciclo (periodo approssimativo da marzo a giugno).

Lingua di insegnamento

Italiano.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ