

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Advanced Foundations of Mathematics for Al

2526-1-F9103Q001

Obiettivi

Il corso si propone di fornire i fondamenti matematici per gli algoritmi di ottimizzazione e di manipolazione dei dati che sono abitualmente usati nell'ambito dell'intelligenza artificiale. Vengono presentate alcune applicazioni, in modo che gli studenti siano in grado di risolvere problemi di ottimizzazione vincolata e non vincolata, analizzare i dati tramite tecniche di riduzione di dimensionalità e trasformate di Fourier, mentre la parte teorica costituirà una solida base per comprendere e padroneggiare le tecniche analoghe, più recenti, che vengono continuamente sviluppate in questo campo.

In termini dei descrittori di Dublino, gli obiettivi sono:

- 1 (Conoscenza e capacità di comprensione) Lo studente acquisirà la conoscenza di strumenti di algebra lineare, dell'analisi di Fourier, la nozione di ottimizzazione e le basi dell'analisi convessa e dell'ottimizzazione convessa.
- 2 (Conoscenza e capacità di comprensione applicate) Lo studente sarà in grado di applicare i metodi di algebra lineare impiegati negli algoritmi più usati e nelle tecniche di riduzione di dimensionalità e di impostare un problema di ottimizzazione vincolata, con particolare attenzione alle proprietà di convessità.
- 3 (Autonomia di giudizio) Lo studente dovrà acquisire la capacità di comprendere e valutare criticamente definizioni, enunciati e dimostrazioni, oltre a riconoscere gli strumenti più adatti alla soluzione dei problemi proposti.
- 4 (Abilità comunicative) L'utilizzo della prova orale è volto ad accertarsi che gli studenti, qualunque sia il loro curriculum precedente, acquisiscano la capacità di descrivere con chiarezza e rigore i concetti fondamentali, utilizzando il linguaggio matematico in maniera appropriata.
- 5 (Capacità di apprendere) Lo studente sarà in grado di approfondire in autonomia metodi di algebra lineare collegati a quelli studiati, espandere la conoscenze delle tecniche di riduzione di dimensionalità e dei metodi dell'ottimizzazione convessa.

Contenuti sintetici

Il corso consiste di una parte teorica ed una di esercitazioni. La parte teorica comincerà dal richiamare i concetti di base di agebra lineare e di calcolo vettoriale che sono richiesti, per poi coprire gli argomenti dell'ottimizzazione (in particolare, l'ottimizzazione convessa), delle tecniche di riduzione di dimensionalità e delle trasformate di Fourier. Nelle esercitazioni sono forniti esempi di problemi collegati ed applicazioni.

Programma esteso

- Algebra lineare: autovalori, autovettori, diagonalizzazione e teorema spettrale. Matrici definite positive, decomposizione ai valori singolari.
- Trasformata e serie di Fourier: serie di Fourier per le funzioni periodiche, trasformata di Fourier di segnali continui e discreti. Definizioni e proprietà elementari, inversione e differenziazione, convoluzioni.
- Calcolo vettoriale: derivate parziali, differenziale, matrice Jacobiana, matrice Hessiana, teorema di Taylor.
- Ottimizzazione: punti critici non vincolati e caratterizzazione attraverso la matrice Hessiana, metodi di discesa del gradiente e di Newton. Teorema della funzione implicita, punti critici vincolati, moltiplicatori di Lagrange.
- Ottimizzazione convessa: insiemi convessi, funzioni convesse. Coniugato convesso.
- Problemi di ottimizzazione convessa: definizioni, casi notevoli, dualità e condizioni di dualità forte e ottimalità.
- Tecniche di riduzione di dimensionalità lineari e nonlineari: proiettori lineari, analisi delle componenti principali, analisi delle componenti indipendenti, analisi delle componenti principali con metodo kernel.

Prerequisiti

Fondamenti di analisi matematica: derivate, integrali, serie numeriche. Fondamenti di algebra lineare: spazi vettoriali ed applicazioni lineari, rappresentazione matriciale.

Modalità didattica

Lezioni ed esercitazioni, per un totale di 56 ore, con alternanza di esercizi e spiegazioni all'interno di ciascuna lezione. Le lezioni saranno svolte in presenza, in modalità erogativa, e la presenza è caldamente raccomandata.

Materiale didattico

M. P. Deisenroth, A. A. Faisal, C. S. Ong, Mathematics for Machine Learning, Cambridge University Press (2020). Note fornite dal docente.

Periodo di erogazione dell'insegnamento

Primo semestre.

Modalità di verifica del profitto e valutazione

L'esame è individuale e consiste di una parte scritta ed una orale. Nello scritto viene valutata l'abilità nell'applicare le nozioni matematiche alla soluzione di esercizi e problemi. In alternativa alla prova scritta si prevedono due prove in itinere scritte. L'esame orale si concentra, invece, sullo stabilire la conoscenza delle nozioni matematiche e sulla capacità di esprimerle in una maniera adeguata, oltre che sul determinare la comprensione dei processi deduttivi che legano gli oggetti matematici.

Orario di ricevimento

Su appuntamento tramite email.

Ufficio: 3022, Università di Milano-Bicocca, Dipartimento di Matematica e Applicazioni, Via Roberto Cozzi 55 - 20125 Milano

Edificio U5-Ratio.

Email: alberto.maiocchi@unimib.it

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ | IMPRESE, INNOVAZIONE E INFRASTRUTTURE | CITTÀ E COMUNITÀ SOSTENIBILI