

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Ingegneria di Processo

2526-1-F0803Q060

Obiettivi

L'insegnamento si propone di fornire gli elementi fondamentali per la scelta e la progettazione delle apparecchiature impiegate nelle operazioni unitarie dell'ingegneria di processo, con particolare riferimento alle applicazioni nell'ambito delle biotecnologie e dell'industria chimica in generale.

Conoscenza e capacità di comprensione

Alla fine del corso lo studente dovrà aver acquisito familiarità con gli impianti di processo e le operazioni unitarie in essi presenti; dovrà conoscere i fenomeni chimico-fisici alla base del funzionamento delle diverse operazioni unitarie considerate; dovrà saper riconoscere i diagrammi comunemente utilizzati dall'ingegnere di processo; dovrà conoscere i principali metodi di calcolo dei costi di un impianto di processo.

Capacità di applicare conoscenza e comprensione

Al termine dell'insegnamento lo studente dovrà essere in grado di applicare le conoscenze acquisite al punto 1) a diversi problemi nell'ingegneria di processo. In particolare, avrà la capacità di analizzare e risolvere problemi elementari relativi a unità di separazione (quali flash e distillazione, assorbimento, adsorbimento, cromatografia, membrane filtrazione, centrifugazione, sedimentazione, estrazione, precipitazione,) e per unità di scambio termico mediante modelli semplificati basati su bilanci di materia e di energia e su relazioni di equilibrio. Avrà inoltre la capacità di individuare l'operazione unitaria più idonea per realizzare una determinata separazione in base alle proprietà delle miscele e di stimarne il costo.

Autonomia di giudizio

Lo studente dovrà essere in grado di elaborare e saper applicare quanto appreso alla risoluzione di problemi legati all'ingegneria di processo.

Abilità comunicative

Al termine del corso lo studente dovrà essere in grado di esprimere le strategie adottate per risolvere i problemi e di comunicare i risultati ottenuti in maniera chiara e con proprietà di linguaggio.

Capacità di apprendimento

Alla fine dell'insegnamento lo studente sarà in grado di applicare le conoscenze acquisite a contesti diversi da quelli presentati durante il corso, anche mediante l'utilizzo di nuove risorse (testi, articoli su rivista).

Contenuti sintetici

- 1. Introduzione
- 2. Diagrammi e bilanci materiali ed energetici
- 3. Operazioni dell'ingegneria di processo (reattori chimici e bioreattori, operazioni di separazione e recupero del prodotto e fenomeni di trasporto di materia e energia)
- 4. Analisi dei costi

Programma esteso

Nota: il docente per l'anno accademico 2025/2026 sarà designato solo dopo la chiusura del bando. Per questo motivo, il presente Syllabus è una bozza e sarà aggiornato dal nuovo docente.

- Introduzione
 Introduzione ai processi industriali e chimici, bioprodotti, bioseparazioni, operazioni unitarie, operazioni in continuo e batch, schemi, scelta della sequenza ottimale, richiamo di variabili e unità di misura, gas ideali.
- 2. Diagrammi e bilanci materiali ed energetici Diagrammi. Diagramma a blocchi, Process Flow Diagram (PFD), Piping and Instrumentation Diagram (P&ID).

Bilanci materiali ed energetici. Legge di conservazione della massa, scrittura del bilancio materiale per processi stazionari e non, bilancio energetico, procedure di calcolo per la risoluzione di schemi di processo.

3. Operazioni dell'ingegneria di processo Reattori chimici e bioreattori. Operazione batch, fed-batch e continua, configurazioni, materiale di costruzione, monitoraggio della fermentazione, considerazioni pratiche.

Operazioni di separazione e recupero del prodotto. flash e distillazione, assorbimento, adsorbimento, cromatografia, membrane filtrazione, centrifugazione, sedimentazione, estrazione, precipitazione..

Unità di scambio termico. Unità, meccanismi di scambio, calcoli di base per il progetto di uno scambiatore di calore. Simulazione di processo stazionaria e dinamica.

4. Analisi dei costi Metodologie per la stima dei costi di investimento e operativi.

Prerequisiti

Modalità didattica

L'insegnamento è erogato tramite lezioni frontali supportate da presentazioni in PowerPoint ed esercizi pratici, basati su case study, svolte in aula.

È inoltre prevista un'uscita didattica presso i laboratori del Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta" del Politecnico di Milano per la visita virtuale a un impianto di Crude Distillation Unit (previa approvazione del Consiglio di Coordinamento Didattico).

Materiale didattico

Le slides e Il materiale utilizzato a lezione verranno reso disponibili sulla piattaforma e-learning dell'insegnamento.

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

L'esame finale è una prova scritta con un esercizio e con domande relative a tutti gli argomenti del corso. Durante l'esame lo studente dovrà dimostrare di aver compreso gli argomenti del corso e di essere in grado di esporre con chiarezza le conoscenze acquisite. Il voto è espresso in trentesimi.

Orario di ricevimento

Ricevimento: su appuntamento tramite richiesta via email al docente. Indirizzo emial: mattia.vallerio@polimi.it

Sustainable Development Goals

ACQUA PULITA E SERVIZI IGIENICO-SANITARI | ENERGIA PULITA E ACCESSIBILE | IMPRESE, INNOVAZIONE E INFRASTRUTTURE | CONSUMO E PRODUZIONE RESPONSABILI