

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Biochimica Industriale

2526-1-F0803Q047

Obiettivi

L'insegnamento consentirà agli studenti di acquisire conoscenza operativa di aspetti avanzati della biochimica delle proteine e delle applicazioni degli enzimi in processi di biocatalisi.

Conoscenza e capacità di comprensione.

Lo studente imparerà a comprendere e interpretare le caratteristiche delle proteine in termini di relazioni struttura funzione e le principali applicazioni dell' enzimologia in processi di biocatalisi.

Capacità di applicare conoscenza e comprensione.

Al termine dell'insegnamento lo studente avrà imparato ad applicare le conoscenze acquisite alla comprensione degli sviluppi scientifici nel settore e alla pianificazione di esperimenti di miglioramento dei processi di biocatalisi.

Autonomia di giudizio.

Lo studente dovrà essere in grado di elaborare quanto appreso e a valutarne le interconnessioni con altre materie avanzate.

Abilità comunicative.

Alla fine dell'insegnamento lo studente saprà esprimersi in modo appropriato nella descrizione delle tematiche affrontate.

** Capacità di apprendimento.**

Alla fine dell'insegnamento lo studente sarà in grado di consultare la letteratura sugli argomenti trattati e saprà analizzare, applicare e integrare e collegare le conoscenze acquisite con quanto verrà appreso in insegnamenti correlati agli aspetti di base e applicativi dell'enzimologia industriale.

Questi skills verranno implementati incoraggiando gli studenti alla discussione e soprattutto grazie a lavori di gruppo che cambiano di anno in anno e possono riguardare applicazioni della biocatalisi in vari campi.

Contenuti sintetici

Il corso si propone l'approfondimento di aspetti avanzati relativi all'applicazione di tecniche biochimiche e molecolari a processi industriali basati sull'utilizzo di proteine, in particolare enzimi. Sono trattate le applicazioni in

biocatalisi delle principali famiglie di enzimi e le possibilità di migliorarne le prestazioni tramite l'utilizzo di enzimi da organismi non convenzionali, tecniche di ingegneria proteica e immobilizzazione. Si approfondiscono aspetti relativi al ripiegamento delle proteine *in vitro* e *in vivo*, con particolare attenzione alle problematiche relative all'aggregazione di proteine ricombinanti, al ruolo degli chaperoni e a passaggi critici del processo quali la formazione di ponti disolfuro.

Programma esteso

ASPETTI DI BASE E APPLICAZIONI DELLA BIOCATALISI

Introduzione all' enzimologia industriale

Visione d'insieme dei campi di applicazione delle varie classi di enzimi, caratteristiche del catalizzatore di importanza per l'applicazione, fonti e metodi di preparazione di enzimi industriali

Come migliorare le proprietà di un biocatalizzatore

Studio della biodiversità: enzimi da organismi estremofili in particolare termofili, psicrofili e alofili. Enzimi da metagenomica

Ingegneria proteica con i metodi dell'evoluzione guidata. Vengono illustrati esempi in cui sì è modificata la specificità e la stabilità di vari enzimi alla temperatura e ai solventi organici. Evoluzione in provetta di interi operoni e di pathways metabolici

Immobilizzazione: adsorbimento, incapsulazione, intrappolamento. Metodi e supporti per l'immobilizzazione. Crosslinking e metodi basati sull'associazione a domini di pull-down. Esempi di come l'immobilizzazione può essere usata per modulare le proprietà di un enzima.

Approfondimenti su particolari classi di enzimi. Il contenuto di guesta parte del corso varia ogni anno

Ripiegamento e aggregazione delle proteine

Ripiegamento delle proteine in vitro

Metodi per lo studio dei processi di ripiegamento

Aspetti termodinamici e cinetici del ripiegamento. Dai primi modelli al concetto di "folding funnels" all' analisi "phi" Ripiegamento *in vivo*

Enzimi che favoriscono I passaggi lenti: peptidil prolil isomerasi, disolfuro isomerasi

Chaperoni di folding e di holding, disaggregasi. Una visione aggiornata sul meccanismo d'azione e il ruolo specifico degli chaperoni

Espressione di proteine ricombinanti e loro aggregazione in corpi di inclusione. Metodi per favorire la solubilità dei polipeptidi e per la loro rinaturazione, nel caso sia necessario recuperare proteine funzionali da corpi di inclusione.

Prerequisiti

Prerequisiti. Conoscenza di aspetti di base della biochimica.

Propedeuticità. Nessuna

Modalità didattica

Il corso viene tenuto in presenza ed è organizzato in 21 lezioni da 2 ore costituite da:

- una parte in modalità erogativa (didattica erogativa, DE) focalizzata sulla presentazione di contenuti, concetti, principi scientifici da parte del docente per circa 34 ore
- una parte (circa 8 ore) in modalità interattiva (didattica interattiva, DI), che prevede interventi didattici integrativi, brevi interventi effettuati dai corsisti.

Una parte del corso viene organizzata in base a lavori di gruppo condotti dagli studenti il cui oggetto varia di anno in anno.

L'insegnamento verrà tenuto in lingua italiana. Il materiale didattico è in inglese.

Materiale didattico

Slides. Reperibili sulla piattaforma e-learning dell'insegnamento Bibliografia. Monografie e articoli scientifici reperibili sulla piattaforma e-learning dell'insegnamento.

Periodo di erogazione dell'insegnamento

Secondo semestre

Modalità di verifica del profitto e valutazione

Esame orale su tutti gli argomenti trattati nel corso

Orario di ricevimento

Orario di ricevimento: su appuntamento richiesto via mail al docente.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ | ENERGIA PULITA E ACCESSIBILE | CONSUMO E PRODUZIONE RESPONSABILI