

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Laboratory of Nuclear and Subnuclear Measurements I

2526-1-F1703Q018

Obiettivi

Padronanza delle principali tecniche sperimentali per la fisica delle particelle elementari, la fisica nucleare e le applicazioni in fisica medica e ambientale

Contenuti sintetici

Realizzazione di un esperimento di fisica nucleare e subnucleare: caratterizzazione della sorgente, del rivelatore, montaggio e ottimizzazione dell'elettronica di front-end, acquisizione e analisi dei dati

Programma esteso

Gli studenti, in gruppi da 3 o 4, realizzano per esteso un singolo esperimento di fisica nucleare e subnucleare. Il lavoro include il design dell'esperimento, la caratterizzazione indipendente dei rivelatori, dell'elettronica di front-end, e dell'acquisizione, la presa dati e l'analisi.

Gli esperimenti che possono essere realizzati utilizzando la strumentazione di laboratorio sono:

- 1) Dimostrazione sperimentale del principio di funzionamento di una PET (positron emission tomography)
- 2) Misura della vita media di uno stato metastabile del 57Fe da una sorgente di 57Co
- 3) Esperimento di Compton realizzato con i fotoni di annichilazione dal 22Na
- 4) Misura della vita media a riposo dei muoni

Prerequisiti

Le tecniche sperimentali e di analisi dei dati dei corsi di Laboratorio della Laurea Triennale. E' fortemente consigliato seguire il corso di Rivelatori di Radiazioni, che di norma viene erogato quasi completamente prima dell' inizio del laboratorio.

Modalità didattica

L'insegnamento ha natura puramente interattiva (DI), trattandosi di un corso di laboratorio.

Gli esperimenti vengono svolti nei laboratori del Dipartimento di Fisica e supervisionati dal docente. I risultati sono raccolti in una relazione finale scritta in Inglese.

Materiale didattico

Relazioni degli anni precedenti. Si consigliano anche alcuni capitoli (a seconda dell' esperimento) di:

- G. F. Knoll, "Radiation Detection and Measurement", 4th ed., Wiley & Sons
- K. Grupen, "Particle Detectors", 2nd ed., Cambridge University Press
- G. Gilmore, "Practical gamma ray spectroscopy", 2nd ed., Wiley & Sons
- F. Terranova, "A modern primer in particle and nuclear physics", 1st ed., Oxford Univ. Press

Periodo di erogazione dell'insegnamento

I semestre

Modalità di verifica del profitto e valutazione

Una settimana prima dell' esame, la relazione finale, scritta in inglese, dev'essere inviata in formato digitale ai docenti. L'elaborato dovra' illustrare le modalita' di svolgimento delle varie "tappe" affrontate per effettuare l'esperimento, come enunciate nel "Programma esteso". Gli studenti, divisi nei gruppi corrispondenti all'esperimento, discutono la relazione e tutto il lavoro svolto con i docenti. Durante l'esame vengono approfondite con ciascuno studente le tecniche implementate, le criticita' riscontrate e le sorgenti di errore sistematico nella misura.

Per gli studenti Erasmus siamo disponibili a far svolgere l'esame in inglese.

Orario di ricevimento

A richiesta dei team.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ | PARITÁ DI GENERE | IMPRESE, INNOVAZIONE E INFRASTRUTTURE