

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Processi Chimici e Tecnologie

2526-1-F5402Q016

Area di apprendimento

L'insegnamento si inserisce nell'area di apprendimento delle discipline chimiche applicate e dell'ingegneria di processo, con l'obiettivo di fornire allo studente le competenze necessarie per comprendere e valutare criticamente le scelte progettuali e operative adottate nei processi chimici industriali, alla luce delle variabili tecniche, economiche, ambientali e di sicurezza che ne influenzano l'efficienza e la sostenibilità.

Obiettivi formativi

Fornire strumenti avanzati per la comprensione delle tecnologie e delle scelte impiantistiche utilizzate nell'industria chimica, dimensionamento e valutazione dal punto di vista energetico e di impatto ambientale delle soluzioni individuate. Proporre un percorso, attraverso le materie trattate, che manifesti l'interdisciplinarità delle scelte che il laureato in Scienze e Tecnologie chimiche quotidianamente deve affrontare nell'esercizio delle proprie funzioni. Fornire agli studenti gli strumenti per uno sguardo più ampio della chimica e del suo utilizzo, mirata anche a consolidare una scelta formativa continua.

Proporre percorsi di sostenibilità ambientale delle tecnologie chimiche nell'ambito della de-carbonizzazione e dell' efficientamento energetico.

Consolidare i fondamenti dei processi e delle tecnologie per traguardare gli obiettivi ambientali fissati dagli impegni europei per l'industria chimica nel medio e lungo periodo.

Consolidare ulteriormente il rapporto tra Università ed industria, strutturalmente complementari per lo sviluppo intellettuale ed industriale.

Contenuti sintetici

Energia e industria chimica

Produzione di building blocks da fonti rinnovabili

Reattoristica

Fenomeni di trasporto di materia avanzati

Programma esteso

- Evoluzione dell'aspetto energetico nell'industria chimica; tendenze della green chemistry, decarbonizzazione, efficientamento energetico, cattura co2 e gas serra.
- Tecnologie chimiche: assorbimento e stripping, reattoristica (Reattori a pistone e a mescolamento, isotermi e non isotermi), catalisi, idrolisi (membrane). Contestualizzazione in ambiti aziendali di concetti quali sostenibilità, approcci LCA e altri benchmark (waste-to-fuel, carbon footprint);
- produzione energia e combustibili avanzati
- processi chimici tradizionali (sintesi idrogeno, ammoniaca, metanolo, etilene)
- processi chimici a partire da materie prime rinnovabili
- polimeri biocompatibili e produzione monomeri da fonti rinnovabili

Prerequisiti

Principi di chimica fisica: fondamentali di termodinamica degli equilibri chimici, fenomeni di trasporto, chimica organica e inorganica, catalisi e cinetica chimica.

Metodi didattici

Lezioni frontali di teoria con spiegazioni alla lavagna e uso di slide, approfondimenti anche con nozioni complementari durante le attività di esercitazioni

Modalità di verifica dell'apprendimento

Esame scritto e orale.

L'eventuale prova scritta prevede una breve sezione (max 20') che ha la funzione di prova di ammissione alla fase successiva orale.

Competenze richieste: capacità di rielaborare i concetti acquisiti in aula sia in ottica di multidiscilìlinarità che in ambito di problem solving; risoluzione di brevi quesiti quali-quantitativi in ambito industriale. Esposizione chiara delle nozioni apprese durante il corso.

Testi di riferimento

Jacobs A. Moulijn, Michiel Makkee, Annelies Van Diepen

Chemical Process Technology

Ed Wiley

Robin Smith

Chemical Process - design and integration

Ed Wiley

Forni Rossetti

fenomeni di trasporto

Ed Cortina Milano

Gian Berto Guarise

Lezioni di impianti chimici

Ed Cleup

Sustainable Development Goals

IMPRESE, INNOVAZIONE E INFRASTRUTTURE