

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Nanochemistry, Nanoporous Materials and Nanomedicine

2526-1-FSM02Q040

Obiettivi

Il corso è diviso in due parti:

La prima parte è incentrata sui concetti fondamentali della progettazione e preparazione di materiali nanostrutturati e nanoparticelle e sull'effetto dei fattori dimensionali e di forma sulle proprietà dei materiali. Verranno utilizzate strategie di autoassemblaggio e templataggio e lo sfruttamento delle interazioni per la creazione di materiali con funzioni specifiche, a partire da elementi costruttivi su scala molecolare fino a strutture complesse con organizzazione gerarchica su diverse scale di dimensione. Inoltre, il programma mira ad applicare gli approcci nanotecnologici che hanno un impatto sui processi per produrre materiali con proprietà migliorate.

La seconda parte è incentrata sull'applicazione di materiali nanostrutturati e nanoparticelle nel campo della nanomedicina. Il corso illustrerà l'impatto che i nanomateriali hanno nel progresso della medicina e dell'assistenza sanitaria, compreso il loro ruolo nella fornitura di terapie, ingegneria tissutale e tecniche di biosensing/diagnosi. Verranno presentate diverse classi di nanomateriali organici e inorganici e strategie di funzionalizzazione chimica di superficie per ottenere proprietà stealth e per indurre il targeting attivo e selettivo della cellula malata. Verranno inoltre discusse applicazioni biomediche innovative delle nanoparticelle (ad es. ipertermia, terapia fotodinamica, uso della radiazione Cerenkov).

Conoscenze e capacità di comprensione

Al termine del corso lo studente conosce i principali metodi di preparazione e caratterizzazione dei nanomateriali, delle nanomacchine e dei materiali porosi. Inoltre le principali tecniche analitiche, specialmente la spettroscopia di Risonanza Magnetica Nucleare in soluzione e allo stato solido, la Spettroscopia Infrarossa, la Spettroscopia UV-vis, i metodi calorimetrici e termogravimetrici, e la diffrazione di raggi-X da cristallo singolo e da polveri policristalline.

Conoscenza e comprensione

Al termine del corso lo studente avrà acquisito conoscenze su:

- principali metodi di sintesi convenzionali
- strategie sintetiche di ultima generazione per la produzione di nanomateriali innovativi
- relazioni proprietà-struttura nei nanomateriali

Applicare conoscenza e comprensione

Al termine del corso lo studente sarà in grado di descrivere i principali approcci sintetici e i metodi di caratterizzazione più idonei

per modulare le proprietà dei nanomateriali per usi scientifici e applicativi.

Autonomia di giudizio

Lo studente sarà in grado di orientarsi nel campo dei nanomateriali sia in termini di struttura chimica, metodi di sintesi convenzionali

e innovativi, sia in termini di proprietà dei nanomateriali.

Competenze comunicative

Lo studente sarà in grado di esprimere gli argomenti trattati durante il corso con competenze linguistiche adeguate alle nanoscienze.

Capacità di apprendimento

Lo studente sarà in grado di applicare le conoscenze acquisite durante il corso per comprendere gli argomenti trattati nella

letteratura scientifica e brevettuale nel campo dei nanomateriali innovativi.

Contenuti sintetici

Il corso si focalizza sui concetti fondamentali per la fabbricazione di nanostrutture e come vengono applicati alle diverse classi di materiali. Include i metodi per controllare la dimensione, la forma e la struttura dei sistemi nanostrutturati, nonché l'effetto di questi parametri sulle proprietà dei materiali.

Il corso illustra i concetti fondamentali della nanomedicina e come le proprietà dei nanomateriali possono essere sfruttate nelle applicazioni biomediche. Esso comprende come la funzionalizzazione chimica di superficie può aggiungere nuove funzioni al nanodispositivo e gli usi innovativi dei nanomateriali in campo biomedico.

Programma esteso

Principi costruttivi dei materiali nanostrutturati, assemblaggio gerarchico e metodi per guidare l'autoassemblaggio Progettazione e sintesi di elementi molecolari con dimensioni e forma predeterminate, composizione e funzionalità per la fabbricazione di materiali nanostrutturati e per la costruzione di materiali molecolari e ibridi

Metodi per la preparazione di nanoparticelle, nanotubi, nanotubi e nanofili

Sintesi di modelli per la fabbricazione di materiali nanostrutturati, modulazione dell'interfaccia e costruzione di materiali ibridi

Nanomacchine artificiali e nanointerrurrori allo stato solido e legame meccanico

Approcci specifici per caratterizzare sistemi nanometrici

Principali applicazioni dei materiali nanostrutturati nel campo dell'energia, dell'elettronica, dell'automotive, del sensing per riconoscimento molecolare ecc

Materiali nanoporosi: micro e ultra-micro porosità, elevata area superficiale, elevata capacità, funzionalizzazione, assorbimento selettivo

- Cristalli Molecolari, Strutture metallo-organiche, Strutture organiche covalenti
- Principi di fabbricazione
- Confinamento molecolare e reazioni chimiche nei nanospazi
- Applicazioni ambientali: cattura gas, purificazione e sequestro gas (CO2), stoccaggio gas (H2 e CH4)
- Cattura dell'acqua e di inquinanti
- · Vettori di farmaci

Nanotecnologia nell'industria petrolifera e del gas: separazione e recupero sostenibili di petrolio e gas.

Seconda parte:

Concetti base di nanomedicina e nanotecnologia

Classi di materiali nanostrutturati e nanoparticelle (es. nanotubi di carbonio, liposomi, nanoparticelle inorganiche, punti quantici, NP polimeriche, ecc.)

Rivestimento per biocompatibilità e proprietà invisibili

Caratterizzazione di nanosistemi in ambiente fisiologico: dynamic light scattering (DLS) e potenziale Zeta

Nanosistemi per la somministrazione di farmaci

Nanosistemi per il bioimaging

Nanosistemi per la terapia

Stimoli sensibili e nanomateriali intelligenti

Targeting passivo: Permeabilità e ritenzione migliorate (EPR)

Targeting attivo: legame ligando/recettore
Terapia fotodinamica (radiazione Cerenkov)
Ipertermia con nanoparticelle d'oro
Nanoparticelle multifunzionali
Tossicità dei nanomateriali

Prerequisiti

- Buona conoscenza della chimica generale.
- Conoscenze di base di termodinamica, parametri fisico-chimici.
- Conoscenza di base dei metodi spettroscopici e di diffrazione.

Modalità didattica

Le lezioni saranno tenute in inglese.

24 lezioni di due ore ciascuna, in presenza, Didattica erogata.

Materiale didattico

- 1. Concepts of Nanochemistry (G. A. Ozin, L. Cademartiri) Wiley
- 2. Nanoporous Materials (K. Kaneko, F. Rodriguez-Reinoso Eds.) Springer 2019
- 3. Crystal Engineering A Textbook (Gautam R Desiraju, J. J. Vittal, A. Ramanan)
- 4. Nanomaterials and Nanotechnology in Medicine (Visakh P.M.) Wiley
- 5. Fundamentals of Nanomedicine (J. F. Leary) Cambridge University Press
- 6. Appunti del docente (presentazioni power point di supporto alla attività didattica)

Periodo di erogazione dell'insegnamento

Primo anno, secondo semestre.

Modalità di verifica del profitto e valutazione

L'esame orale consiste nella valutazione delle conoscenze acquisite dallo studente nel campo delle nanoscienze, con particolare attenzione alla sintesi, alla struttura e alle proprietà dei nanomateriali. L'autonomia di analisi e giudizio, nonché la capacità di esposizione saranno valutate secondo i seguenti criteri:

18-20/30: preparazione su un numero limitato di argomenti trattati durante il corso, con limitata capacità di discussione e analisi; capacità di presentazione e lessico non sempre corretti, con limitata capacità di elaborazione critica.

21-23/30: preparazione parziale sugli argomenti trattati durante il corso, limitata capacità di autoanalisi; utilizzo di un lessico corretto ma non del tutto accurato e chiaro; capacità di presentazione incerte.

24-27/30: preparazione su un'ampia gamma di argomenti trattati durante il corso, capacità di autoargomentazione e analisi critica; capacità di applicare le conoscenze generali al contesto specifico della scienza dei polimeri e di collegare gli argomenti studiati a casi concreti; utilizzo di un lessico corretto e competenza nell'uso del linguaggio scientifico.

28-30/30L: preparazione completa ed esaustiva su tutti gli argomenti trattati durante il corso; autonomia di analisi e giudizio critico sugli argomenti trattati a lezione; capacità di collegare gli argomenti studiati a casi concreti e a diversi contesti scientifici; piena padronanza del lessico scientifico e capacità di presentazione rigorosa, chiara e articolata; eccellente capacità di argomentazione e riflessione.

Orario di ricevimento

Martedì dalle 10:30 alle 13:30.

Sustainable Development Goals

IMPRESE, INNOVAZIONE E INFRASTRUTTURE