

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Macromolecular Strategies for Materials Synthesis

2526-1-FSM02Q030-FSM02Q03003

Obiettivi

Le proprietà macroscopiche dei materiali polimerici dipendono fortemente dalla natura chimica e dai trattamenti fisici e chimici, a partire dall'approccio sintetico, e dalla presenza nel materiale di opportuni additivi.

Il corso si propone di introdurre le strategie fondamentali per la realizzazione di materiali polimerici e come modulare le proprietà macroscopiche (termiche e meccaniche) variando l'architettura delle catene polimeriche. Particolare enfasi sarà data alle relazioni struttura-proprietà nei polimeri amorfi e semicristallini.

Conoscenze e capacità di comprensione

Al termine del corso lo studente avrà acquisito conoscenze su:

- principali metodi di sintesi convenzionali
- strategie sintetiche di ultima generazioneper la realizzazione di polimeri innovativi
- relazioni proprietà-struttura in polimeri amorfi e semicristallini.

Conoscenza e capacità di comprensione applicate

Al temine del corso lo studente sarà in grado di descrivere i principali approcci di sintesi per modulare le proprietà dei polimeri per usi scientifici e applicativi.

Autonomia di giudizio

Lo studente sarà in grado di orientarsi nel campo dei polimeri sia in termini di struttura chimica, metodi di sintesi convenzionali ed innovativi e proprietà dei materiali polimerici.

Abilità comunicative

Lo studente saprà esprimere i temi approfonditi durante il corso con proprietà di linguaggio idonee alla scienza dei polimeri.

Capacità di apprendere

Lo studente potrà applicare le conoscenze acquisite durante il corso per la comprensione della letteratura scientifica e brevettuale nell'ambito dei materiali polimerici innovativi.

Contenuti sintetici

Il corso si concentra sugli aspetti rilevanti della scienza dei polimeri in termini di architettura macromolecolare; delle principali strategie sintetiche per il controllo della struttura e topologia dei polimeri, della massa molecolare e distribuzione; e delle relazioni proprietà-struttura.

Le proprietà in soluzione e in massa dei polimeri saranno descritte mediante alcuni metodi di caratterizzazione, evidenziando l'impatto della microstruttura del polimero sulle prestazioni dei materiali. Verranno inoltre affrontati temi speciali sui polimeri a cristalli liquidi, sulle resine termoindurenti e sui polimeri sostenibili.

Programma esteso

- Le varie classi di polimeri e la loro struttura chimica, inclusi polimeri reticolati, copolimeri, miscele e compositi polimerici.
- Strategie sintetiche per controllare con precisione la struttura macromolecolare, inclusa la composizione della catena, la microstruttura, la funzionalità e la topologia.
- Polimeri termoplastici, polimeri termoindurenti, elastomeri ed elastomeri termoplastici.
- Stati di aggregazione nei polimeri.
- Principali proprietà e transizioni di polimeri amorfi e semicristallini e loro dipendenza dai principali parametri, quali massa molecolare e distribuzione.
- Impatto della stereochimica e del grado d'ordine sulle proprietà termiche e meccaniche dei polimeri.
- Relazioni fondamentali struttura-proprietà-prestazioni nei materiali polimerici.
- Copolimeri: metodi di sintesi, strutture e interfacce.
- Sintesi di polimeri tridimensionali e dendrimeri.
- Poliolefine e processo Spheripol per la crescita del polimero con mantenimento della morfologia.
- Polimeri sostenibili: polimeri da fonti rinnovabili, biodegradabili e biocompatibili (il caso studio del PLA)
- Polimeri allo stato liquido cristallino.
- Polimeri autoriparanti.
- Resine termoindurenti e compositi polimerici.
- Metodi di caratterizzazione di macromolecole in soluzione e allo stato solido.

Prerequisiti

Gli studenti dovranno aver maturato i concetti fondamentali di chimica, in particolare di chimica organica e della chimica dei polimeri.

Modalità didattica

Le lezioni frontali saranno svolte in inglese. 24 lezioni da 2 ore in presenza, Didattica Erogativa.

Materiale didattico

- Lucidi del docente (presentazioni power point a supporto dell'attività didattica)
- Walton, D. J., Lorimer, J. P. (2023), Polymers. Regno Unito: Oxford University Press.
- Polymer Chemistry Koltzenburg, S.; Maskos, M.; Nuyken, O.; Springer: Berlin, Germany, 2017.
- Principle of Polymerization, (4th edition) G. Odian, 2004 John Wiley & Sons, Inc.
- Polymer Chemistry" (Second Edition) P.C. Hiemenz, T.P. Lodge, CRC Press, 2017.
- Articoli tratti dalla letteratura scientifica.

Periodo di erogazione dell'insegnamento

Primo anno, Primo semestre.

Modalità di verifica del profitto e valutazione

COLLOQUIO ORALE SUGLI ARGOMENTI SVOLTI A LEZIONE E SU ARGOMENTI DI APPRODONDIMENTO.

Colloquio orale durante il quale verranno valutate le conoscenze acquisite nell'ambito della scienza dei polimeri, con particolare attenzione alla sintesi, struttura e alle proprietà dei materiali polimerici. L'autonomia di analisi, di giudizio e le capacità espositive dello studente verranno valutate durante l'esame con i seguenti criteri:

18-20/30: preparazione su un numero ridotto di argomenti trattati durante il corso, con capacità di trattazione e analisi limitate; competenza espositiva e lessico non sempre corretti, con una capacità di elaborazione critica limitata.

21-23/30: preparazione parziale sugli argomenti trattati durante il corso, capacità di analisi autonoma limitata; uso di un lessico corretto anche se non del tutto accurato e chiaro; capacità espositiva a tratti incerta.

24-27/30: preparazione su un numero ampio di argomenti trattati durante il corso, capacità di svolgere in modo autonomo l'argomentazione e l'analisi critica; capacità di applicazione delle conoscenze generali al contesto specifico della scienza dei polimeri e collegamento dei temi studiati a casi concreti; uso di un lessico corretto e competenza nell'uso del linguaggio scientifico.

28-30/30L: preparazione completa ed esaustiva su tutti gli argomenti trattati durante il corso; autonomia di analisi e di giudizio critico dei temi affrontati a lezione; capacità di collegamento dei temi studiati a casi concreti e a diversi contesti scientifici; piena padronanza del lessico scientifico e capacità espositiva rigorosa chiara ed articolata; ottime capacità di argomentazione e riflessione.

Orario di ricevimento

Si riceve su appuntamento. (silvia.bracco@unimib.it)

Sustainable Development Goals

IMPRESE, INNOVAZIONE E INFRASTRUTTURE | CONSUMO E PRODUZIONE RESPONSABILI