

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Matematica per l'Economia M

2526-1-F8206B025

Obiettivi formativi

Il corso di Matematica per l'Economia M si propone di fornire agli studenti le competenze fondamentali per l'analisi matematica applicata ai modelli economici, sviluppando capacità di comprensione e applicazione delle tecniche matematiche in contesti economici. In particolare, gli obiettivi formativi includono l'acquisizione di conoscenze sulle equazioni differenziali e sui sistemi dinamici, con particolare attenzione alla risoluzione esplicita, all'analisi qualitativa e alla stabilità delle soluzioni, nonché alla comprensione dei teoremi di esistenza e unicità. Il corso mira inoltre a sviluppare competenze nell'ambito dell'ottimizzazione dinamica e del controllo ottimo, fondamentali per l'analisi di modelli economici complessi, attraverso l'applicazione del principio del massimo di Pontryagin e delle condizioni di ottimalità. Infine, si intende introdurre gli studenti ai concetti di teoria della misura e dell'integrazione, con particolare attenzione alla misura di Lebesgue e alle sue proprietà, per favorire una comprensione approfondita degli strumenti matematici avanzati utilizzati in economia, in finanza quantitativa, e nelle scienze sociali.

Queste competenze si collegano strettamente all'area di apprendimento "Statistica" del corso di laurea magistrale in Scienze Statistiche ed Economiche, poiché forniscono le basi matematiche e analitiche necessarie per l'analisi statistica avanzata, la modellizzazione dei dati e l'interpretazione di fenomeni complessi, favorendo un approccio integrato tra teoria matematica e applicazioni statistiche.

Gli studenti acquisiranno competenze teoriche e pratiche, sviluppando la capacità di applicare tali conoscenze a problemi reali, interpretare criticamente i risultati e proporre soluzioni metodologicamente fondate. Il percorso formativo promuove l'autonomia di giudizio nell'uso di strumenti matematici e statistici, permettendo agli studenti di diventare professionisti più sicuri e indipendenti. Il corso contribuisce inoltre a consolidare le capacità di apprendimento e di aggiornamento nell'ambito dei metodi avanzati di analisi matematica e statistica, in coerenza con l'obiettivo di una formazione permanente.

Contenuti sintetici

Il corso si compone di tre parti. Le prime due sono strettamente interconnesse mentre la terza, oltre a qualche collegamento con la seconda, fornisce elementi utili in corsi come Finanza Matematica M.

Nella Parte I sono esposti gli elementi fondamentali della teoria dei sistemi di equazioni differenziali ordinarie.

Nella Parte II viene presentato un approccio alla risoluzione di problemi di controllo ottimo (in tempo continuo) e un risultato di esistenza di soluzioni.

Nella Parte III vengono forniti i primi rudimenti della teoria della misura e dell'integrazione e, come caso particolare, viene introdotto l'integrale di Lebesgue, dando enfasi ai risultati di convergenza (monotona e dominata).

Programma esteso

Parte I (ODE):

- Equazioni differenziali in modelli economici, problemi di Cauchy e relativa nozione di soluzione.
- Riduzione di sistemi di ordine superiore al primo a sistemi del primo ordine.
- Risoluzione esplicita di alcune classi di equazioni differenziali: equazioni a variabili separabili, equazioni lineari, equazioni di Bernoulli, equazioni omogeee, equazioni esatte.
- Alcune applicazioni a modelli (evoluzione di prezzi di mercato soggetti ad aggiustamento, modello macroeconomico di crescita di Solow).
- Teoremi di esistenza ed unicità in piccolo ed in grande di soluzioni per problemi di Cauchy.
- Soluzioni d'equilibrio ed alcune nozioni di stabilità (Lyapunov, asintotica locale/globale) per soluzioni d'equilibrio.
- Elementi per l'analisi qualitativa di equazioni differenziali autonome.
- Sistemi di equazioni differenziali lineari: metodi per la risoluzione esplicita e per l'analisi della stabilità di soluzioni d'equilibrio.

Parte II (Controllo Ottimo):

- Ottimizzazione dinamica: descrizione di problemi di controllo.
- Il principio del massimo di Pontryagin (caso a dinamica lineare e caso generale).
- Condizioni sufficienti di ottimalità (condizione di Mangasarian e condizione di Arrow).
- Applicazioni ad alcuni modelli economici (modello di compravendita ottima, problema di massimizzazione della vendita).
- Il problema più semplice del calcolo delle variazioni come caso particolare di un problema di controllo ottimo e relativa applicazione (modello di investimento/pianificazione del consumo ottimo).
- Una condizione di esistenza di controllo ottimo (teorema di Filippov).

Parte III (Elementi di teoria della misura):

- Algebre e ?-algebre, ?-algebre generate.
- Misure su ?-algebre e loro proprietà.
- Costruzione della misura di Lebesgue in R?.
- Funzioni misurabili e loro proprietà.
- Integrale in uno spazio di misura e sue proprietà.
- Misure definite a mezzo di integrale ed assolutamente continue.
- Teoremi di convergenza (dominata (Lebesgue) e monotona (B. Levi)).
- L'integrale di Riemann e di Lebesgue a confronto.

Prerequisiti

Nessuna propedeuticità. Tuttavia è consigliato che lo studente ripassi le proprie competenze sui seguenti argomenti di matematica, tipicamente impartiti in corsi di laurea triennali:

- Numeri complessi (nozioni di base);
- Integrazione di funzioni di una variabile reale;
- Calculus per funzioni di più variabili reali;
- Calcolo matriciale, determinante, invertibilità, rango;
- Autovalori e riduzione in forma diagonale di matrici;
- Forme quadratiche;
- Convessità/concavità di insiemi e funzioni.

Metodi didattici

L'intera attività formativa verrà svolta attraverso lezioni. Tutte le lezioni sono svolte in presenza in modalità erogativa:

10 lezioni da 3 ore e 6 lezioni da 2 ore.

Durante lo svolgimento del corso verranno proposti esercizi da risolvere autonomamente in preparazione all'esame, alcuni dei quali verranno poi discussi in apposite sessioni organizzate dal docente.

Modalità di verifica dell'apprendimento

L'esame si svolgerà in forma scritta e, in caso di superamento della prova scritta con una valutazione sufficiente (>=18/30), in forma orale su richiesta dello studente o del docente. Non sono previste prove parziali in itinere.

Il formato di una prova scritta prevede essenzialmente i seguenti tipi di quesito:

- la risoluzione di 3 esercizi/problemi;
- la discussione in dettaglio di uno tra i modelli presentati nel corso;
- l'esposizione dettagliata di alcuni argomenti della teoria e la loro applicazione in casi specifici (domande aperte).

Nello svolgimento di una prova d'esame saranno valutati la capacità di analisi e di classificazione di un problema proposto, la capacità di scelta ed applicazione delle metodologie di risoluzione prospettate nella teoria, la profondità, la precisione e la completezza espositiva nella discussione di modelli e dell'apparato teorico svolto nel corso.

Il docente del corso rende anche disponibile materiale per la simulazione di una prova d'esame.

Testi di riferimento

Appunti delle lezioni e materiale per le esercitazioni a cura del docente del corso.

Letture consigliate per integrare le lezioni:

- 1. A. Guerraggio S. Salsa, *Metodi matematici per l'economia e le scienze sociali*, G. Giappichelli Editore, Torino, 1997.
- 2. K. Sydsæter P. Hammond A. Seierstad A. Strøm, *Further Mathematics for Economic Analysis*, Prentice Hall, Harlow, 2008.

Periodo di erogazione dell'insegnamento

Secondo semestre, secondo ciclo.

Lingua di insegnamento

Italiano.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ | CONSUMO E PRODUZIONE RESPONSABILI