

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Meccanica Quantistica

2526-1-F4002Q017

Obiettivi

Obiettivi del corso secondo i Descrittori di Dublino

1. Conoscenza e capacità di comprensione

Al termine del corso, l? student? avrà acquisito una solida comprensione dei principi fondamentali della meccanica quantistica, inclusi i postulati, il formalismo matematico e il ruolo delle simmetrie. Sarà in grado di riconoscere le evidenze sperimentali che richiedono una descrizione quantistica e di motivare la necessità del superamento della fisica classica.

2. Conoscenza e capacità di comprensione applicate

L? student? sarà in grado di risolvere semplici problemi quali buca, gradino, barriera di potenziale, oscillatore armonico, atomo di idrogeno e di utilizzare strumenti matematici per analizzare sistemi quantistici di complessità crescente.

3. Autonomia di giudizio

L? student? svilupperà la capacità di valutare criticamente le implicazioni del formalismo quantistico, maturando una comprensione concettuale della rivoluzione epistemologica introdotta dalla meccanica quantistica e delle sue conseguenze riguardo al superamento della fisica classica.

4. Abilità comunicative

L? student? sarà in grado di esprimere in modo chiaro e rigoroso i concetti della meccanica quantistica e di comunicare efficacemente le proprie soluzioni e argomentazioni, anche in contesti interdisciplinari.

5. Capacità di apprendere

L? student? avrà acquisito gli strumenti teorici e metodologici per proseguire lo studio della fisica teorica avanzata (come la teoria quantistica dei campi e la fisica della materia), sviluppando un'autonomia nello studio e nella comprensione di nuovi problemi e modelli.

Contenuti sintetici

- Concetti fondamentali della fisica quantistica: stati, operatori e postulati della fisica quantistica
- Proprietà quantistiche: operatori, principio di indeterminazione, basi di informazione quantistica
- Quantizzazione canonica e meccanica quantistica: operatori posizione e impulso, teorema di Noether
- Evoluzione temporale: equazione di Schroedinger, rappresentazione di Schroedinger e di Heisenberg
- **Meccanica quantistica in una dimensione**: particella unidimensionale libera, pacchetto d'onda, buca e gradino di potenziale, barriera di potenziale, oscillatore armonico
- Sistemi quantistici in più di una dimensione: spazi prodotto diretto, potenziali separabili, il problema dei due corpi
- Il momento angolare: gruppi e algebre di Lie, gruppo delle rotazioni, momento angolare, spin, composizione di spin e momenti angolari
- Problemi tridimensionali: equazione di Schroedinger radiale, potenziale coulombiano e atomo di idrogeno
- Azione in meccanica quantistica: integrale di cammino e approccio di Feynman.

Programma esteso

Risultati di Apprendimento del Corso secondo i Descrittori di Dublino

1. Conoscenza e capacità di comprensione

Al termine del corso, I? student? sarà in grado di:

- Dimostrare una chiara comprensione dei fenomeni fisici che mettono in crisi le teorie classiche, giustificando la necessità della meccanica quantistica.
- Comprendere e articolare i postulati fondamentali della meccanica quantistica, inclusi concetti chiave come stati quantistici, operatori e osservabili.
- Comprendere il principio di indeterminazione e la struttura matematica che distingue osservabili compatibili e incompatibili attraverso le loro relazioni di commutazione.
- Comprendere il formalismo della matrice densità e il suo ruolo nella descrizione degli stati quantistici e delle misure.
- Spiegare il teorema di Noether e la sua applicazione ai sistemi quantistici, in particolare in relazione a simmetrie e leggi di conservazione.
- Comprendere le proprietà matematiche e fisiche degli operatori posizione e quantità di moto, e la formulazione dell'equazione di Schrödinger.
- Analizzare soluzioni di sistemi quantistici unidimensionali, come il pozzo di potenziale, il gradino di potenziale, la barriera di potenziale e l'oscillatore armonico.
- Comprendere la generalizzazione della meccanica quantistica a sistemi in più dimensioni, incluso il momento angolare e la simmetria rotazionale.
- Descrivere l'applicazione della teoria dei gruppi ai sistemi quantistici, in particolare il gruppo di rotazione e le sue rappresentazioni.
- Comprendere problemi tridimensionali come l'atomo di idrogeno ed essere introdotti alla formulazione a integrale sui cammini e alla sua derivazione dell'equazione di Schrödinger.

2. Capacità di applicare conoscenza e comprensione

L? student? sarà in grado di:

- Risolvere problemi canonici di meccanica quantistica in una o più dimensioni utilizzando metodi analitici.
- Analizzare e prevedere il comportamento dei sistemi quantistici in seguito a misurazioni, compresi i

cambiamenti nel contenuto informativo.

- Applicare il formalismo quantistico per reinterpretare sistemi classici alla luce della simmetria e degli
 operatori.
- Stimare l'andamento della funzione d'onda di una particella a partire dalle proprietà del potenziale.
- Utilizzare tecniche come la separazione delle variabili per risolvere problemi in più dimensioni.
- Combinare spin e momenti angolari nei sistemi composti.

3. Autonomia di giudizio

L? student? sarà in grado di:

- Valutare criticamente i limiti della meccanica classica e la necessità della meccanica quantistica per spiegare determinati fenomeni fisici.
- Valutare strumenti concettuali e matematici della meccanica quantistica in contesti fisici concreti.
- Formulare interpretazioni motivate del comportamento quantistico e valutare le soluzioni proposte in termini di coerenza con i principi fondamentali.

4. Abilità comunicative

L? student? sarà in grado di:

- Comunicare chiaramente concetti fondamentali e strutture matematiche della meccanica quantistica usando una terminologia appropriata.
- Tradurre formalismi matematici astratti in concetti fisici comprensibili e spiegarli sia a pubblici specialisti che non specialisti.
- Dimostrare competenza nell'espressione dei principi fisici in forma scritta e orale, secondo gli standard della disciplina.

5. Capacità di apprendimento

Al termine del corso, I? student?:

- Avrà acquisito le basi necessarie per affrontare argomenti avanzati di fisica teorica, come la teoria quantistica dei campi o la fisica della materia condensata.
- Sarà in grado di confrontarsi con la letteratura scientifica contemporanea nel campo della fisica quantistica.
- Avrà sviluppato capacità di apprendimento autonomo attraverso la risoluzione di problemi, l'analisi critica e la sintesi di idee fisiche e matematiche.

Prerequisiti

Conoscenza di base di fisica classica, analisi e algebra come insegnata nella laurea triennale in Matematica

Modalità didattica

Lezione frontale. La partecipazione attiva sarà incoraggiata attraverso la discussione di esempi e problemi durante le lezioni secondo principi di apprendimento attivo e di didattica partecipativa.

Materiale didattico

Testo di riferimento

• S. Forte, L. Rottoli, "Fisica Quantistica", Zanichelli

Testi di approfondimento

- J. Dimock, "Quantum Mechanics and Quantum Field Theory", Cambridge
- J.J. Sakurai, J. Napolitano, "Modern Quantum Mechanics (2nd Edition)", Addison-Wesley (anche disponibile in traduzione italiana)
- Benjamin Schumacher, Michael Westmoreland, "Quantum Processes Systems, and Information", Cambridge University Press
- A. Berera e L. Del Debbio, "Quantum Mechanics", Cambridge U.P.
- J. Binney e D. Skinner, "The Physics of Quantum Mechanics", Oxford U.P.
- M. Maggiore, "A modern introduction to quantum field theory", Oxford U.P. (per teoria dei gruppi)

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

Esame orale basato sulla discussione di argomenti trattati a lezione e su esercizi svolti durante il corso. Il punto di partenza dell'esame sarà un **esercizio assegnato** anticipatamente da risolvere a casa e presentare durante l'esame.

L'esame verte su tutto il programma del corso, inclusi esercizi ed approfondimenti svolti durante le lezioni, che sono parte integrante del corso.

Orario di ricevimento

Su richiesta dell? student?, previo appuntamento via email col docente

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ

