

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Game Theory

2526-1-F4002Q008

Obiettivi

Obiettivi formativi secondo i Descrittori di Dublino:

Conoscenza e capacità di comprensione

Lo studente acquisirà una solida comprensione teorica dei concetti fondamentali della teoria dei giochi. In particolare, al completamento dell'insegnamento, conoscerà i concetti di gioco non cooperativo, di strategie pure, mista e comportamentali, di corrispondenza di miglior risposta e di vari tipi di equilibrio, di gioco cooperativo a utilità trasferibile e non trasferibile. Tali conoscenze si estendono a esempi significativi e contesti applicativi, anche a discipline trasversali rispetto ad altre aree della matematica.

Conoscenza e capacità di comprensione applicate

Lo studente sarà in grado di applicare le conoscenze acquisite alla modellizzazione e alla risoluzione di problemi concreti in ambito matematico, in particolare a contesti legati all'analisi economica. Sarà in grado di sviluppare dimostrazioni rigorose e costruire esempi significativi, anche in ambito interdisciplinare.

Autonomia di giudizio

Attraverso la riflessione sui contenuti teorici e pratici del corso, lo studente svilupperà capacità logiche e critiche nell'analisi di problemi in diversi contesti applicativi, in particolare di tipo economico.

Abilità comunicative

Lo studente sarà in grado di comunicare in modo chiaro, preciso e coerente i contenuti matematici del corso in forma scritta e orale. Saprà presentare argomentazioni teoriche e discutere applicazioni in ambiti matematici e scientifici affini, anche a interlocutori non specialisti.

Capacità di apprendimento

Il corso contribuirà a sviluppare la capacità di apprendimento autonomo, favorendo l'acquisizione di strumenti concettuali e tecnici che lo studente potrà impiegare nell'approfondimento individuale e nella preparazione della tesi magistrale.

Contenuti sintetici

Giochi strategici ed equilibrio di Nash, giochi in forma estesa, giochi cooperativi.

Programma esteso

1. INTRODUZIONE ALLA TEORIA DEI GIOCHI

Problemi di decisione, preferenze. Funzione di utilità. Problema di decisione convesso e funzioni di utilità lineari. Lotterie. Funzione di utilità di von Neumann e Morgenstern.

2. GIOCHI STRATEGICI

Definizione di gioco strategico a *n* giocatori. Equilibrio di Nash. Corrispondenza di miglior risposta. Punti fissi di una corrispondenza e caratterizzazione degli equilibri. Teorema di Kakutani. Teorema di Nash.

Giochi a due giocatori a somma zero. Valore del gioco. Relazione tra esistenza di equilibri di Nash e valore del gioco.

Estensione miste di giochi finiti. Supporto per una strategia mista e corrispondenza di miglior risposta in strategie pure. Caratterizzazione degli equilibri. *Bimatrix game. Matrix game.* Teorema di minimax di Von Neumann. Algoritmo per 2xm-matrix game. Equilibri perfetti.

Strategie strettamente dominanti ed eliminazione iterata.

3. GIOCHI IN FORMA ESTESA

Insieme delle scelte. Gioco in forma estesa a memoria perfetta. Gioco in forma estesa a informazione perfetta. Strategie pure, comportamentali, miste. Strategie equivalenti. Teorema di Kuhn. Equilibrio di Nash di per un gioco in forma estesa.

Decomposizione e sottogioco. Equilibrio perfetto nei sottogiochi. Metodo di induzione a ritroso. Teorema di esistenza di equilibri perfetti nei sottogiochi.

4. GIOCHI COOPERATIVI

Coalizione. Giochi a utilità non trasferibile (NTU-game). Problemi di contrattazione (Bargaining). Punti Pareto efficienti. Regola di allocazione. Soluzione di Nash. Giochi a utilità trasferibile (TU-game). Nucleo e concetti relativi. Valore di Shapley. Nucleolo. Giochi convessi.

Applicazioni.

Prerequisiti

Le conoscenze di base e i principali risultati di algebra lineare e analisi in ambito finito-dimensionale.

Modalità didattica

56 ore di lezione svolte in modalità erogativa, in presenza (8 CFU).

Corso erogato in lingua inglese.

Parte delle ore sarà dedicata all'illustrazione dei principali risultati della teoria; la rimanente parte sarà dedicata allo svolgimento di esercizi di applicazione della teoria svolta.

Materiale didattico

- J. Gonzalez-Diaz, I. Garcia-Jurado and M.G. Fiestras-Janeiro, *An Introductory Course on Mathematical Game Theory*, American Mathematical Society
- M. Maschler, E. Solan, S. Zamir, Game Theory, Cambridge University Press

Appunti del docente disponibili sulla pagina elearning del corso

Periodo di erogazione dell'insegnamento

II semestre

Modalità di verifica del profitto e valutazione

Modalità d'esame:

non sono previste prove in itinere.

L'esame finale consiste in una prova scritta e in un'eventuale prova orale (facoltativa).

Scritto (e orale)

Prova scritta: consiste in domande aperte, in particolare:

- a) esercizi che permettono al docente di valutare la capacità dello studente di applicare la teoria nella risoluzione di problemi o nella verifica di semplici risultati teorici;
- b) domande aperte di tipo teorico, in cui si chiede allo studente di produrre dimostrazioni tra quelle proposte e/o di fornire in modo completo alcune definizioni, enunciati di teoremi, dando qualche esempio.

Prova orale: la prova orale verte su dimostrazioni, definizioni, esempi/controesempi discussi a lezione, così come su esercizi teorici; è preceduta da una discussione della prova scritta. Possono sostenere la prova orale tutti gli studenti che hanno ottenuto nello scritto una votazione non inferiore a 18. Le due parti concorrono in egual misura alla determinazione del voto complessivo finale.

Gli studenti che hanno riportato una votazione non inferiore a 18 e decidono di non sostenere l'esame orale, possono registrare direttamente il voto.

Orario di ricevimento
Su appuntamento
Sustainable Development Goals

Lo studente che ottiene una valutazione finale sufficiente può rifiutare il voto per non più di due volte.