

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Analisi Geometrica

2526-1-F4002Q002

Obiettivi

Il corso si propone di fornire un'introduzione all'analisi su spazi metrici, con particolare enfasi sugli aspetti geometrici e sullo sviluppo di un calcolo differenziale al primo ordine in contesti metrici generali.

I risultati di apprendimento attesi, descritti secondo i Descrittori di Dublino, sono

1. Conoscenza e capacità di comprensione

Al termine del corso, lo studente avrà acquisito una comprensione approfondita delle definizioni fondamentali, dei principali risultati teorici e di alcune strategie dimostrative relative all'analisi su spazi metrici. Conoscerà classi significative di spazi (metrici di lunghezza, intrinseci, di misura) e i contesti matematici in cui essi emergono.

2. Conoscenza e capacità di comprensione applicate

Lo studente sarà in grado di applicare metodi dell'analisi e della geometria a spazi metrici non standard, identificandone proprietà geometriche e analitiche rilevanti. Saprà introdurre e utilizzare strumenti di calcolo differenziale di primo ordine in tali ambienti.

3. Autonomia di giudizio

Lo studente svilupperà la capacità di analizzare criticamente le ipotesi dei risultati studiati, valutare l'applicabilità degli strumenti teorici in contesti differenti e riconoscere collegamenti concettuali tra vari argomenti del corso.

4. Abilità comunicative

Lo studente sarà in grado di esporre con chiarezza e rigore contenuti teorici, esempi ed elaborazioni proprie, utilizzando in modo appropriato il linguaggio matematico e argomentativo sia in forma scritta che orale.

5. Capacità di apprendimento

Lo studente acquisirà autonomia nello studio di testi avanzati, nonché gli strumenti concettuali necessari

per affrontare ulteriori approfondimenti nell'ambito dell'analisi geometrica e discipline affini, anche in vista di attività di ricerca.

Contenuti sintetici

Nozioni basilari e aspetti geometrici (tra cui la curvatura) degli spazi metrici di lunghezza.

Elementi di analisi e di calcolo differenziale al primo ordine su spazi metrici di misura.

Programma esteso

Parte I. Spazi metrici (intrinseci) e curvatura.

- Spazi metrici: definizione, esempi, topologia; misura e dimensione di Hausdorff.
- Spazi di lunghezza, metriche intrinseche, geodetiche, lunghezza e velocità; costruzioni e esempi.
- Spazi di curvatura limitata: alcune definizioni equivalenti di curvatura limitata (dall'alto o dal basso) per uno spazio metrico; angoli; costruzioni e esempi.
- Convergenza di spazi metrici: convergenza uniforme; definizioni e proprietà della distanza di Gromov-Hausdorff.
- Panoramica sulle proprietà degli spazi metrici a curvatura positiva: crescita dei volumi, dimensione di Hausdorff; globalizzazione; esempi (coni, superfici convesse,...); cenni a risultati di compattezza.

Parte II. Analisi e calcolo differenziale su spazi metrici di misura

- Spazi metrici di misura; proprietà del raddoppio; lemmi di ricoprimento: teorema di Vitali, teorema di Lebesque.
- Funzione massimale di Hardy-Littlewood: risultati di limitatezza.
- Richiami su spazi di Sobolev in R^n; immersioni di Sobolev; disuguaglianze di Poincaré.
- Spazi di Sobolev su spazi metrici: approccio via la funzione massimale; funzioni lipschitziane: teoremi di estensione e di densità.
- Gradiente superiore, moduli di una famiglia di curve, capacità; spazi di Sobolev newtoniani su spazi metrici: definizioni e proprietà.
- Cenni a equazioni differenziali su spazi metrici: disuguaglianze di Poincaré su spazi metrici; funzioni armoniche e problemi di Dirichlet.

Prerequisiti

Calcolo in più variabili; fondamenti di teoria della misura e della teoria degli spazi Lp.

Una conoscenza di base degli spazi di Sobolev in R^n può aiutare nella fruizione della seconda parte del corso, ma non è strettamente necessaria.

Modalità didattica

Si utilizza un approccio didattico ibrido che combina didattica frontale in modalità ergativa (DE) e didattica interattiva (DI). La DE costituisce la parte principale del corso, e include la presentazione e spiegazione dettagliata dei contenuti teorici e di alcuni esempi. La DI prevede interventi attivi degli studenti tramite riposte a esercizi e problemi, brevi interventi e discussioni collettive. Non è possibile stabilire precisamente a priori il numero di ore dedicate alla DE e alla DI, poiché le modalità si intrecciano in modo dinamico per adattarsi alle esigenze del corso e favorire un apprendimento partecipativo e integrato, combinando teoria e pratica.

Le lezioni (56 ore, 8 CFU) sono in presenza e si svolgono in italiano, e ove necessario, in inglese.

Degli esercizi saranno assegnati mano a mano. La loro soluzione potrà essere discussa, oltre che in classe, anche durante i ricevimenti su richiesta degli studenti.

Materiale didattico

I principali testi di riferimento sono i seguenti.

Per la prima parte del corso:

 D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry, volume 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001

Per la seconda parte del corso:

- J. Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001
- A. Björn, J. Björn, *Nonlinear potential theory on metric spaces*. EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011. xii+403 pp.

Saranno messe a disposizione degli studenti delle note redatte dal docente che contengono i concetti, i risultati, le dimostrazioni e buona parte degli esempi trattati a lezione.

Periodo di erogazione dell'insegnamento

Il semestre.

Modalità di verifica del profitto e valutazione

L'esame consiste in una prova orale conclusiva con voto in trentesimi. Non sono previste prove in itinere.

L'esame orale sarà principalmente un colloquio sugli argomenti svolti a lezione, teso a verificare il livello delle conoscenze, l'autonomia di analisi e giudizio e le capacità espositive acquisite dallo studente. Qualche facile esercizio o esempio non trattato a lezione potrà essere discusso.

Il corso è diviso in due parti principali (si veda la voce "programma esteso" per maggiori dettagli). Per l'esame è possibile concentrarsi maggiormente su una delle due parti (a scelta) da conoscere in dettaglio, e dell'altra parte conoscere più a grandi linee i concetti, gli oggetti e le definizioni, ma non necessariamente gli enunciati rigorosi dei risultati e le dimostrazioni.

E' anche possibile scegliere un breve argomento di approfondimento, concordato con, ed eventualmente (ma non necessariamente) proposto dal, docente con cui cominciare l'esame.

Orario di ricevimento

Su appuntamento.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ