

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Topological Methods in Field Theories

2526-1-F4002Q035

Obiettivi

Coerentemente con gli obiettivi formativi del Corso di Studio, l'insegnamento si propone di fornire allo studente le conoscenze riguardanti le definizioni e i risultati fondamentali per un'approccio geometrico e topologico allo studio delle teorie classiche di campo, con particolare riferimento alla teoria della vorticità classica, della magnetoidrodinamica ideale e dell'idrodinamica quantistica. Verranno altresì fornite le competenze necessarie a comprendere e utilizzare le principali tecniche e i metodi dimostrativi connessi alla teoria, e le abilità utili ad applicarle per risolvere esercizi e affrontare problemi.

1. Conoscenza e capacità di comprensione

Lo studente acquisirà una conoscenza teorica approfondita dei principali modelli, metodi e risultati della ricerca in teorie di campo geometriche e topologiche; la conoscenza e la comprensione di alcuni esempi chiave in cui si esplica la teoria.

2. Capacità di applicare conoscenza e comprensione

Lo studente sarà in grado di riconoscere il ruolo dei concetti e delle tecniche geometriche e topologiche in diversi ambiti della matematica applicata (teoria della vorticità, magnetoidrodinamica ideale, fluidi quantistici) e nella modellizzazione di fenomeni fisici (dinamica del vortice, relazioni tra energia e complessità, formazione di difetti topologici, annodamenti e legami); la capacità di applicare tale bagaglio concettuale alla costruzione di esempi concreti e alla risoluzione di esercizi; la capacità di esporre, comunicare e argomentare in modo chiaro e preciso sia i contenuti teorici del corso, sia le loro applicazioni a situazioni specifiche, anche inerenti ad ambiti analoghi, ma differenti.

3. Autonomia di giudizio

Lo studente svilupperà la capacità di comprendere e valutare criticamente definizioni, enunciati e dimostrazioni, riconoscendo gli strumenti concettuali più adatti per l'analisi e la risoluzione dei problemi proposti.

4. Abilità comunicative

Lo studente saprà esporre i concetti fondamentali del corso con chiarezza e rigore, utilizzando correttamente il linguaggio matematico.

5. Capacità di apprendimento

Lo studente svilupperà le competenze necessarie per proseguire in autonomia lo studio dell'analisi matematica e delle discipline affini, con capacità di consultazione di testi scientifici e risorse didattiche adequate.

Contenuti sintetici

Il corso intende fornire i fondamenti per l'applicazione di tecniche topologiche nello studio delle teorie classiche di campi annodati. Il programma del corso verte sui seguenti contenuti:

Richiami di teoria del potenziale di Green, flussi fluidi e diffeomorfismi, teoremi di conservazione delle equazioni di Eulero, leggi di conservazione di Helmholtz, magnetoidrodinamica ideale, elicità cinetica e magnetica, teoria del potenziale in domini molteplicemente connessi, elementi di teoria dei nodi, numero di legame e di autolegame, interpretazione topologica dell'elicità, decomposizione geometrica, rilassamento di nodi magnetici, difetti topologici in condensati, Hopfioni e campi annodati, cambi di topologia mediante processi di riconnessione.

Programma esteso

Il programma si articola su una prima parte di carattere generale e su una seconda parte dedicata ad argomenti specifici di carattere più avanzato. In particolare:

Richiami di teoria del potenziale di Green, identità fondamentali, flussi fluidi e diffeomorfismi, teorema cinetico del trasporto, teoremi di conservazione, decomposizione del moto fluido, equazioni di Eulero, equazione del trasporto della vorticità, leggi di conservazione di Helmholtz, legge di Biot-Savart, equazioni di Maxwell, magnetoidrodinamica ideale, elicità cinetica e magnetica, analogie perfetta con i flussi di Eulero.

Correzione di Kelvin per domini moltiplicemente connessi, elementi di teoria dei nodi, interpretazione idrodinamica delle mosse di Reidemeister, configurazione inflessionale ed energia di torsione, numero di legame e autolegame, derivazione del numero di legame dall'elicità magnetica, elicità di avvolgimento e contorsione, rilassamento di nodi magnetici, spettri di stati fondamentali d'energia, interpretazione idrodinamica dell'equazione di Gross-Pitaevskii, difetti topologici in condensati, mappa di Hopf, Hopfioni e campi annodati, cambio di topologia e superfici fisiche, processi di riconnessione, invarianti polinomiali di nodi, misure di complessità topologica.

Prerequisiti

Elementi di geometria differenziale delle curve e delle superfici nello spazio tridimensionale, elementi di meccanica dei sistemi continui, operatori differenziali della fisica matematica e leggi di bilancio in fisica.

Modalità didattica

Lezioni tenute in lingua inglese alla lavagna supportate da dispense (in inglese) distribuite dal docente. Si utilizza un approccio didattico ibrido che combina didattica frontale (DE) e didattica interattiva (DI). La DE include la presentazione e spiegazione dettagliata dei contenuti teorici. La DI prevede interventi attivi degli studenti tramite esercizi e problemi, brevi interventi, discussioni collettive e lavori di gruppo o individuali. Non è possibile stabilire precisamente a priori il numero di ore dedicate alla DE e alla DI, poiché le modalità si intrecciano in modo dinamico per adattarsi alle esigenze del corso e favorire un apprendimento partecipativo e integrato, combinando teoria e pratica.

Materiale didattico

Note del docente (in inglese) distribuite durante il corso.

Periodo di erogazione dell'insegnamento

Il semestre.

Modalità di verifica del profitto e valutazione

Esame orale (in italiano o inglese) con 4 domande estratte da una lista di domande resa nota agli studenti a fine corso. Le soluzioni devono riprodurre il materiale presentato durante il corso, incluse prove dettagliate dei teoremi e asserti dimostrati, completi di calcoli espliciti. Il voto finale è espresso in 30esimi.

Nella prova orale viene valutata la *abilità* operativa di risolvere i temi proposti utilizzando le *conoscenze* acquisite e le *competenze* necessarie a proporre gli argomenti svolti a lezione.

Orario di ricevimento

Su appuntamento da concordarsi col docente tramite contatto email: renzo.ricca@unimib.it.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ