

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Real Analysis and Differential Equations

2526-1-F4002Q003

Obiettivi

Conoscenza e capacità di comprensione

Il corso fornisce una solida conoscenza teorica delle equazioni alle derivate parziali (EDP) lineari, con elementi introduttivi alle equazioni non lineari, e sviluppa la comprensione dei principali risultati analitici, metodi e tecniche dimostrative nell'ambito dell'analisi matematica avanzata.

Conoscenza e capacità di comprensione applicate

Gli studenti saranno in grado di applicare i concetti teorici appresi alla risoluzione di esercizi, allo studio di modelli e alla formulazione rigorosa di problemi differenziali, anche in ambiti interdisciplinari.

Autonomia di giudizio

Il corso stimola lo sviluppo della capacità critica e dell'autonomia nella valutazione dei metodi analitici più appropriati per affrontare problemi di tipo modellistico e teorico, nonché nella validazione dei risultati ottenuti.

Abilità comunicative

Gli studenti acquisiranno la capacità di esporre con chiarezza e rigore argomenti e dimostrazioni relative all'analisi reale e alle EDP, utilizzando il linguaggio matematico formale sia in forma scritta che orale.

Capacità di apprendere

Il corso promuove l'acquisizione di un metodo di studio autonomo e avanzato, necessario per affrontare la letteratura specialistica e proseguire in attività di ricerca o in contesti applicativi ad alto contenuto scientifico.

Contenuti sintetici

Teoria spettrale per operatori autoaggiunti e compatti. Equazioni ellittiche: regolarità, principi del massimo, autovalori e autofunzioni del Laplaciano. Integrale di Bochner. Equazioni alle derivate parziali di tipo parabolico:

soluzioni deboli, metodo di Galerkin, stime dell'energia e principio del massimo. Introduzione alla teoria dei semigruppi di evoluzione in spazi di Banach.

Programma esteso

Equazioni ellittiche del secondo ordine: regolarità delle soluzioni deboli, principi del massimo debole e forte. **Teoria spettrale**: operatori aggiunti, autoaggiunti, compatti, spettro. Spettro di un operatore compatto. Teorema dell'alternativa di Fredholm. Teorema di decomposizione spettrale per operatori compatti autoaggiunti. Autovalori e autofunzioni del Laplaciano.

Integrale di Bochner: Definizione, principali caratteristiche e spazi di Sobolev definiti tramite l'integrale di Bochner. **Equazioni di tipo parabolico**: Soluzioni deboli per equazioni paraboliche del secondo ordine. Metodo di Galerkin. Stime dell'energia, esistenza e unicità di soluzioni deboli. Principio del massimo. Rappresentazione delle soluzioni dell'equazione del calore tramite le autofunzioni del laplaciano.

Introduzione alla teoria dei semigruppi di evoluzione in spazi di Banach: Semigruppi uniformemente continui e fortemente continui, prime proprietà e loro generatori. Insieme risolvente e operatore risolvente. Semigruppi di contrazioni e proprietà dei loro generatori. Il teorema di Hille-Yosida.

Prerequisiti

Spazi di Banach e di Hilbert, spazi L?, loro duali e rispettive proprietà, spazi di Sobolev e teoremi di immersione.

Modalità didattica

56 ore di lezione svolte in modalità erogativa in presenza (8 cfu)

Corso erogato in lingua italiana con possibilità di erogazione in lingua inglese in caso di richiesta/presenza di studenti stranieri.

Materiale didattico

- A. Bressan. Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem. Vol. 20. Oxford University Press on Demand, 2000.
- A. Bressan. Lecture Notes on Functional Analysis. With applications to linear partial differential equations. American Mathematical Society, 2013.
- H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer Science and Business Media, 2010.
- L. C. Evans, Partial Differential Equations, AMS Graduate Studies in Mathematics, Vol.19. Second Edition, Providence 2010.
- D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

Pagina del corso: https://elearning.unimib.it/course/view.php?id=62151

Periodo di erogazione dell'insegnamento

Secondo semestre.

Modalità di verifica del profitto e valutazione

L'esame consiste in una prova scritta e in una sua discussione orale.

La prova scritta consiste in un breve saggio. Verrà richiesto di svolgere due temi su quattro proposti, uno riguardante la prima parte del corso e uno riguardante la seconda, con due ore di tempo a disposizione. L'esposizione dovrà essere precisa, dettagliata, esauriente e coerente con il tema svolto e dovrà contenere alcune tra le dimostrazioni più significative. Verrà valutata la capacità di presentare una selezione di dimostrazioni e, soprattutto, la conoscenza critica e operativa delle definizioni e dei risultati presentati durante il corso, anche mediante l'illustrazione di esempi e controesempi.

La discussione orale si terrà qualche giorno dopo la prova scritta e consisterà in una breve discussione e correzione della prova scritta e verificherà la padronanza degli argomenti riportati nell'elaborato. Non verranno chiesti altri argomenti o dimostrazioni al di fuori dei due temi svolti.

Voto finale in trentesimi.

Orario di ricevimento

Su appuntamento.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ