

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Preparation of Didactic Experiences

2526-1-F4002Q024

Obiettivi

Principali obiettivi del corso:

1. Conoscenza e capacità di comprensione (Knowledge and understanding)

Approfondire la conoscenza dei fondamenti della Fisica Sperimentale, con particolare riferimento ai metodi e alle tecniche utilizzati nell'indagine sperimentale, e al loro impiego nella didattica della fisica, anche in relazione ai contenuti affrontati nei corsi teorici precedenti.

2. Conoscenza e capacità di comprensione applicate (Applying knowledge and understanding)

Sviluppare la capacità di progettare e realizzare in modo autonomo esperimenti di fisica con finalità didattiche, selezionando criticamente le metodologie più efficaci, gestendo la strumentazione, e conducendo l'analisi quantitativa dei dati sperimentali.

3. Autonomia di giudizio (Making judgements)

Promuovere l'acquisizione di un'autonomia critica nell'interpretazione dei risultati sperimentali, nella valutazione dell'affidabilità dei dati, e nella riflessione sul ruolo dell'esperimento nell'insegnamento e nell'apprendimento della fisica.

4. Abilità comunicative (Communication skills)

Consolidare le competenze nell'organizzazione e nella comunicazione dei risultati sperimentali, attraverso relazioni scritte, presentazioni orali e discussioni argomentate, utilizzando un linguaggio scientifico appropriato e strumenti di visualizzazione efficaci.

5. Capacità di apprendere (Learning skills)

Favorire lo sviluppo di strategie di apprendimento autonomo e continuo nell'ambito della didattica laboratoriale della fisica, rendendo gli studenti capaci di aggiornarsi, innovare le proprie pratiche e adattarle a contesti educativi differenti.

Contenuti sintetici

Fondamenti della Fisica e del Metodo Sperimentale.

Concetti base della scienza fisica, didattica delle scienze e fisica del senso comune.

Introduzione alla storia delle scienze fisiche.

Fondamenti di fisica sperimentale e teoria degli errori.

Didattica delle scienze.

Preparazione e conduzione di semplici esperimenti di meccanica, termodinamica, elettromagnetismo, ottica.

Fondamenti fenomenologici della fisica moderna

Programma esteso

Le basi delle scienze sperimentali: Fondamenti del metodo scientifico nelle scienze in generale e nella fisica in particolare.

Sviluppo storico della fisica e introduzione alla storia della fisica sperimentale

Ruolo della matematica nella fisica: introduzione all'uso della matematica nelle scienze sperimentali.

Natura e struttura delle grandezze fisiche: variazioni di scala nei fenomeni naturali e sistemi di riferimento.

Studio sperimentale dei fenomeni fisici: introduzione al problema della misura, agli errori sperimentali (teoria degli errori) e agli strumenti di misura.

Struttura concettuale delle teorie scientifiche, in particolare fisiche, e loro rapporto con gli esperimenti. Campi di validità in relazione agli esperimenti.

Introduzione alla didattica delle scienze e della fisica: approcci didattici, stili di apprendimento, schemi concettuali, esperimenti didattici illustrativi, errori più comuni.

Introduzione alla fisica moderna e interpretazioni della meccanica quantistica.

Prerequisiti

Corsi di Fisica Generale precedentemente svolti, comprendenti fondamenti di meccanica, termodinamica ed elettromagnetismo.

Modalità didattica

Lezioni frontali e sessioni di laboratorio si terranno in presenza.

Materiale didattico

Testi consigliati

- J. R. Taylor, Introduzione all'analisi degli errori, Zanichelli
- S. Rosati, Fisica Generale vol. 1, CEA
- L. Lovitch, S. Rosati, Fisica Generale vol. 2, CEA
- A. B. Arons, Guida all'insegnamento della Fisica, Zanichelli
- U. Besson, Didattica della Fisica, Carocci

Testi e strumenti multimediali di approfondimento

- PSSC (a cura di), Fisica (3 voll.), Quarta Edizione, Zanichelli
- F. Tibone, G. Pezzi, La Fisica secondo il PSSC, Zanichelli
- I video del PSSC, Zanichelli (reperibili sul sito della Zanichelli qui)
- R. P. Feynman, La Fisica di Feynman (3 voll.), Zanichelli
- U. Besson, M. Malgieri, Insegnare la Fisica Moderna, Carocci
- P. Doherty, D. Rathjen, Exploratorium Teacher Institute, Gli Esperimenti dell'Exploratorium (a cura di P. Cerreta), Zanichelli
- A. Rigamonti, A. Varlamov, Magico caleidoscopio della fisica, La Goliardica Pavese
- G. Johnson, I dieci esperimenti più belli, Bollati Boringhieri

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

Relazione scientifica scritta su di un esperimento affrontato in laboratorio seguita da un esame orale

Si prevede che gli esami saranno in modalità orale in presenza.

Orario di ricevimento

Prendere appuntamento tramite email.

