

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Matematica Generale - 2

2526-1-E3305M003-T2

Obiettivi formativi

Il corso vuole fornire allo studente un'adeguata conoscenza delle basi matematiche utili a comprendere i modelli che descrivono i fenomeni economici. In particolare, si intende dotare gli studenti degli strumenti matematici che, a partire dall'espressione analitica di una funzione, permettono di tracciarne un grafico qualitativo.

Ci si aspetta che gli studenti sappiano applicare i concetti teorici illustrati a lezione a semplici esercizi, simili a quelli svolti in aula.

Risultati di apprendimento attesi:

Conoscenza e comprensione

Gli studenti acquisiranno una solida comprensione degli aspetti teorici relativi ai principali argomenti trattati durante il corso, tra cui il calcolo dei limiti e delle derivate, le successioni, le serie numeriche e il calcolo integrale.

2. Capacità di applicare conoscenza e comprensione

Gli studenti saranno in grado di applicare con efficacia i metodi matematici per risolvere problemi coerenti col programma del corso e per affrontare situazioni di ambito economico.

3. Autonomia di giudizio

Gli studenti svilupperanno capacità logiche e analitiche utili per affrontare e risolvere problemi complessi, anche di natura interdisciplinare, valutando criticamente i risultati ottenuti.

4. Abilità comunicative

Gli studenti impareranno ad utilizzare un linguaggio matematico chiaro e rigoroso, in modo da saper esprimere con precisione e coerenza le conoscenze acquisite e da comunicare efficacemente idee, metodi e risultati.

5. Capacità di apprendimento

Gli studenti svilupperanno un metodo di studio autonomo, che consentirà loro di affrontare con

consapevolezza e successo anche studi successivi, di livello più avanzato.

Contenuti sintetici

Studio delle funzioni di una variabile reale. Cenni alle funzioni di due variabili reali. Serie. Integrali.

Programma esteso

Generalità sulle funzioni.

Funzioni di una variabile reale: dominio, immagine, grafico. Funzioni elementari. Monotonia, massimi e minimi. Funzione inversa.

Limiti e teoremi relativi.

Successioni e serie: definizione di serie (carattere e somma), condizione necessaria per la convergenza, serie geometrica, serie telescopica, serie armonica, serie a termini nonnegativi (criteri di convergenza), serie a termini di segno alterno (criterio di Leibniz).

Funzioni continue: teoremi di Weierstrass, degli zeri, dei valori intermedi. Punti di discontinuità.

Forme di indecisione e loro risoluzione.

Calcolo differenziale: definizione di derivata e significato geometrico. Punti di non derivabilità. Legame tra continuità e derivabilità. Teoremi di Rolle, Lagrange, Fermat.

Teoremi di De l'Hopital. Formula di Taylor.

Convessità e concavità: definizione e caratterizzazione del secondo ordine.

Funzioni di due variabili reali: dominio, curve di livello, derivate parziali, punti stazionari.

Integrali indefiniti: definizione, proprietà e tecniche di calcolo (integrali immediati e quasi immediati, integrazione per sostituzione, per parti, integrazione di funzioni razionali). Definizione di integrale definito secondo Riemann e sue proprietà, teoremi sugli integrali definiti. Integrali impropri, criteri di convergenza per gli integrali impropri.

Prerequisiti

Algebra elementare, equazioni e disequazioni, nozioni di base di geometria analitica.

Metodi didattici

Il corso si compone di 56 ore di lezione e di 24 ore di esercitazione.

Parte della didattica potrà venire erogata da remoto (al più il 30% delle ore); la restante parte si svolgerà in presenza.

Per le eventuali lezioni da remoto, gli studenti saranno avvisati dalla docente con congruo anticipo e le stesse potranno essere erogate in streaming oppure in modalità asincrona.

Le lezioni e le esercitazioni si svolgeranno principalmente sotto forma di didattica erogativa.

Modalità di verifica dell'apprendimento

L'esame prevede una prova finale scritta e una prova orale (facoltativa) in caso di voto sufficiente della prova scritta.

Sono previste due prove parziali scritte, di cui una a metà e l'altra alla fine del corso, ciascuna della durata di un'ora e mezza.

La prova scritta relativa all'intero programma (della durata di 2 ore) contiene 5 esercizi e 2 domande di teoria.

Per le due domande di teoria, viene richiesta la conoscenza dei teoremi, con relativa dimostrazione, se vista a lezione, e delle definizioni di alcuni concetti importanti.

Lo schema degli esercizi è il seguente:

Esercizio 1: Trasformazioni di grafici di funzioni elementari

Esercizio 2: a) Limiti b) Serie

Esercizio 3: a) Vario b) Funzioni di due variabili

Esercizio 4: Integrali

Esercizio 5: Studio di funzione

In riferimento alla prova scritta, oltre alla correttezza dei risultati, viene valutata la capacità di motivare i singoli passaggi.

L'eventuale prova orale consiste in un colloquio che inizia con una discussione della prova scritta e che prosegue con domande sugli argomenti presenti nel programma d'esame.

Può contribuire in maniera positiva o in maniera negativa al voto finale.

Testi di riferimento

Slide del corso e materiale didattico fornito sulla piattaforma e-learning.

Libri di testo:

Scaglianti, L., Torriero, A., Scovenna, M. "Manuale di Matematica - Metodi e applicazioni". Edizioni CEDAM Guerraggio, A. "Matematica", seconda, terza o (meglio) quarta edizione. Pearson Prentice Hall Scovenna, M., Grassi, R. "Matematica - Esercizi e temi d'esame". Edizioni CEDAM

Primo semestre.		
Lingua di insegnamento		
Italiano.		

Sustainable Development Goals

Periodo di erogazione dell'insegnamento

PARITÁ DI GENERE