

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Fundamentals of Marine Physical Geography

2526-1-F7402Q027

Obiettivi

Il corso offre una prima introduzione alla geologia marina e si propone di fornire agli studenti (D1) conoscenze in merito ai principali processi che generano e modellano le differenti forme del rilievo costiero e sommerso in ambiente marino, e che ne controllano l'evoluzione nel tempo a breve, medio e lungo termine. Particolare enfasi sarà posta nel fornire (D1) la conoscenza relativa a come le forme e i paesaggi sommersi rispondano ai cambiamenti climatici e agli impatti ambientali.

Ulteriore obiettivo è quello di sviluppare (D2) capacità pratiche relative alla gestione e all'interpretazione di dati derivati dall'uso di tecniche di rilevamento geomorfologico di aree sommerse, al fine di (D4) operare una loro visualizzazione in sistemi informativi geografici (GIS) e per la (D2–D3) realizzazione di cartografie tematiche per l'ambiente marino.

Il corso mira inoltre a promuovere (D3) autonomia di giudizio nell'analisi dei dati geofisici e geomorfologici, e a stimolare (D5) capacità di apprendimento autonomo nell'uso di strumenti digitali e metodi di rilevamento avanzati.

Contenuti sintetici

- Oceanografia e geografia fisica marina nel contesto della Blu Economy.
- Metodi di ricerca in geologia e geomorfologia sottomarina: mappatura dei fondali, campionamento e ispezioni visive: strumenti e pianificazione delle indagini.
- Le forme del rilievo sommerso: piattaforme continentali, frane sottomarine, canyon, sistemi canali e argini delle conoidi sottomarine, contouriti, dorsali oceaniche, strutture derivate dalla risalita di fluidi e gas dal fondo, piane abissali, fosse oceaniche, ambienti estremi e biocostruzioni.
- Processi geomorfici in ambiente sommerso: tettonica, sedimentologia, oceanografia, (bio)geochimica e geobiologia.
- Forme costiere e processi: spiaggie e dune, delta ed estuari. Coste rocciose e scogliere coralline.

Programma esteso

14 lezioni da 2 ore online via webex, Didattica Interattiva (4 CFU - 28 ore in totale):

Introduzione: Geografia fisica marina, oceanografia e geomorfologia marina. La blu economy.

Metodi di ricerca in geomorfologia sottomarina. Mappatura dei fondali, tecniche di campionamento e ispezioni visive: strumenti e pianificazione delle indagini.

Geomorfologia dei fondali oceanici. La mappa globale dei fondali oceanici e classificazione delle forme a grandi scala (margini continentali, isole oceaniche e vulcani sottomarini, dorsali oceaniche, piane abissali e fosse oceaniche).

Processi geomorfici in ambiente sottomarino e costiero. Venti e circolazione oceanica (effetti sulle forme costiere e sottomarine), onde e maree. Cambiamenti del livello del mare (indicatori geomorfologici). Processi sedimentari in ambiente sommerso, ambienti di sedimentazione e morfologie associate: Morfologie della piattaforma continentale, contouriti, onde di sedimento e strutture sedimentarie generate dall'azione delle correnti di fondo, processi di risedimentazione (frane sottomarine e flussi torbiditici), canyon sottomarini e solchi d'erosione, sistemi arginicanale delle conoidi sottomarine. Strutture legate alla risalita di gas e fluidi dal fondo.

I sistemi costieri: Terminologie e classificazione dei sistemi costieri. Delta, estuari e spiaggie. Coste rocciose e scogliere coralline.

8 attività di laboratorio da 3 ore online via webex, Didattica Interattiva (2 CFU - 24 ore in totale):Rilevamento geomorfologico in ambiente sommerso: tecniche di implementazione di dati remoti in sistemi geografici informatizzatizzati (GIS)

Le attività di laboratorio verranno svolte in laboratori informatici attrezzati con workstation e software in dotazione all'ateneo (ArcGIS pro) per creare cartografie tematiche di ambiente marino utilizzando (modelli Digitiali del Terreno (DTM) marini, dati di backscattering, e dati vettoriali relative alle operazioni di rilievo e campionamento in mare. Verranno inoltre sperimentate le principali tecniche di analisi geospaziale dei dati implementati in ArcGIS Pro.

8 attività di esercitazione da 3 ore in presenza, Didattica Interattiva (2 CFU - 24 ore in totale):Rilevamento geomorfologico in ambiente sommerso: tecniche acustiche e interpretazione dei dati

Le attività pratiche verranno svolte in laboratori attrezzati e srannop finalizzate a presentare la strumentazione geofisica acustica utilizzata per effetture mappatura geomorfologica in aree sommerse, concentrandosi anche sull'interpretazione dei dati relativi ad alcuni casi di studio.

Prerequisiti

Fondamenti di matematica, fisica e chimica.

Modalità didattica

14 lezioni da 2 ore online via webex, Didattica Interattiva (4 CFU - 28 ore in totale)

8 attività di laboratorio da 3 ore online via webex, Didattica Interattiva (2 CFU - 24 ore in totale)

8 attività di esercitazione da 3 ore in laboratorio (Lab 3028 - U4), Didattica in presenza (2 CFU - 24 ore in totale)

Materiale didattico

Alan P. Trujillo & Harold V. Thurman. Essential of Oceanography. Pearson

Savini A., Krastel S and Micallef A (2021). Perspectives on Submarine Geomorphology: An Introduction. Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN: 9780124095489 - https://doi.org/10.1016/B978-0-12-818234-5.00192-9

Micallef A., Krastel S., Savini A. Submarine Geomorphology. Springer

D.A.V. Stow, H.G. Reading, Collinson J.D – Deep Seas. In: H.G. Reading, Sedimentary environment: Processes, Facies and Stratigraphy (Cap. 10). Blackwell Science.

NC Mithcell. Submarine Geomorphology. Elsevier

G. Masselink & Hughes M.G. An introduction to coastal processes and geomorphology. Cambridge

Sarà cura del docente indicare una selezione di articoli scientifici per favorire l'approfondimento delle tematiche affrontate.

Periodo di erogazione dell'insegnamento

Primo Semestre

Modalità di verifica del profitto e valutazione

Esame scritto e orale

La prova scritta consisterà in un questionario di 60 domande con risposta a scelta multipla focalizzato sugli argomenti trattati durante le lezioni orali.

La prova orale consisterà in una breve discussione su uno dei seguenti materiali: una carta tematica, un profilo sismico, oppure un'elaborazione grafica di un dato acquisito tramite strumentazione geofisica acustica. L'obiettivo è verificare l'apprendimento delle tecniche di esplorazione e rilevamento geomorfologico in ambiente marino. In alternativa, la discussione potrà riguardare un argomento teorico, a discrezione del docente.

Le prove verranno svolte in 2 giorni consecutivi o in un singolo giorno in funzione del numero di studenti iscritti. I voti sono espressi come n/30. Il voto minimo per l'ammissione è 18/30. In particolare, il voto finale sarà dato dalla media ottenuta dalla valutazione della prova scritta e dal risultato ottenuto nella prova orale.

Per essere ammessi all'esame scritto è necessario aver consegnato entro il giorno prima dell'esame tutti gli esercizi assegnati durante i laboratori e le esercitazioni via mail al tutor e al docente del corso.

Orario di ricevimento

Per fissare un appuntamento contattare il docente via mail

Sustainable Development Goals

IMPRESE, INNOVAZIONE E INFRASTRUTTURE | VITA SOTT'ACQUA