

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Fisica Nucleare e Subnucleare - M-Z

2526-3-E3001Q048-T2

Obiettivi

1. Conoscenza e capacità di comprensione

Il corso fornisce una comprensione avanzata dei concetti fondamentali della fisica delle particelle elementari e della fisica nucleare. Gli studenti apprenderanno:

- i fondamenti della cinematica relativistica e del formalismo covariante;
- le caratteristiche e classificazioni delle particelle elementari;
- le principali interazioni fondamentali: elettromagnetica (QED), forte (QCD) e debole;
- le simmetrie di gauge, discrete e continue
- Parità e C-parità
- i fenomeni di decadimento e scattering
- le proprietà generali dei nuclei, i decadimenti radioattivi e le reazioni nucleari.

2. Conoscenza e capacità di comprensione applicate

Gli studenti svilupperanno la capacità di:

- applicare modelli teorici alla descrizione quantitativa di fenomeni subatomici;
- interpretare i diagrammi di Feynman;
- analizzare i fenomeni di interazione particelle-materia e comprendere il funzionamento dei rivelatori di particelle;
- descrivere processi nucleari quali i decadimenti alfa, beta e gamma
- spiegare le catene radioattive e la radioattività naturale;
- collegare teorie e modelli a risultati sperimentali, come quelli ottenuti dagli esperimenti di Wu e Goldhaber.

3. Autonomia di giudizio

Il corso favorisce l'acquisizione di strumenti critici per:

- valutare l'affidabilità e la significatività fisica di modelli teorici e dati sperimentali;
- interpretare risultati nel contesto del Modello Standard;

• riconoscere limiti e potenzialità dei diversi approcci teorici.

4. Abilità comunicative

Gli studenti saranno in grado di:

- comunicare con proprietà di linguaggio i concetti fondamentali della fisica subnucleare e nucleare;
- presentare e discutere contenuti teorici o sperimentali.

5. Capacità di apprendimento

Il corso intende sviluppare:

- la capacità di studio autonomo di testi scientifici avanzati;
- l'attitudine alla consultazione di letteratura specialistica;
- le basi metodologiche per il proseguimento degli studi in corsi avanzati o attività di ricerca nei settori della fisica teorica, sperimentale e applicata.

Contenuti sintetici

Particelle elementari e Cinematica relativistica. Tecniche di rivelazione delle particelle. Simmetrie in fisica delle particelle. Interazioni elettromagnetiche. Interazioni forti e colore. Leptoni, quark, adroni. Interazioni deboli e la scoperta dei mediatori massivi. Nuclei e loro proprietà'. Decadimenti radioattivi e modelli nucleari.

Programma esteso

Punti materiali e particelle elementari. Cinematica relativistica e formalismo covariante. Unita' naturali. Decadimenti e scattering. Sezioni d'urto e ampiezze di decadimento. Interazioni particelle-materia. Rivelatori di particelle. Elettrodinamica classica e quantistica (QED). Simmetria di gauge, simmetrie discrete e continue della QED. Parita' e C parita'. I diagrammi di Feynman e lo scattering in QED. Interazioni forti. Quark e carica di colore. La simmetria di gauge della QCD. Liberta' asintotica e confinamento. La simmetria di flavor e il modello a 2 quark. Mesoni e barioni. Interazioni deboli. Elicita' e chiralita'. Esperimenti di Wu e Goldhaber. La teoria elettrodebole . La scoperta delle correnti neutre e dei mediatori massivi.

Proprieta' generali dei nuclei e reazioni nucleari. Decadimenti radioattivi e loro proprieta' generali. Decadimenti in cascata e equilibrio secolare. Radioattivita' naturale e sue applicazioni. Decadimenti alfa. Decadimenti gamma.

Prerequisiti

Conoscenza della meccanica quantistica non relativistica e della teoria della relativita' ristretta.

Modalità didattica

Didattica erogativa. Lezione Frontale (8 CFU)

Materiale didattico

F. Terranova, A Modern Primer in Particle and Nuclear Physics, Oxford University Press, 2021. G. Krane, Introductory Nuclear Physics, Wiley, 1988 (3rd edition)

Periodo di erogazione dell'insegnamento

secondo semestre

Modalità di verifica del profitto e valutazione

COLLOQUIO SUGLI ARGOMENTI SVOLTI A LEZIONE

Orario di ricevimento

Appuntamento su richiesta

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ | ENERGIA PULITA E ACCESSIBILE | IMPRESE, INNOVAZIONE E INFRASTRUTTURE