

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

COURSE SYLLABUS

Propaedeutic Sciences

2526-1-I0303D040

Obiettivi

Lo studente deve conoscere gli aspetti generali e le nozioni di base di Statistica Medica, Matematica, Fisica Generale, Fisica delle Radiazioni, Basi di Elaborazioni dei Segnali, necessari allo svolgimento della sua professione.

Contenuti sintetici

Al termine del corso lo studente deve avere acquisito le nozioni di base di Statistica Medica, Matematica, Fisica Applicata e Basi di Elaborazione dei Segnali

Programma esteso

STATISTICA MEDICA: Tipi di Variabili. Serie e seriazioni statistiche. Diverse tipologie di rappresentazioni grafiche. Indici di posizione e dispersione. Errori di misurazione: precisione e accuratezza. Probabilità: probabilità condizionata, concetto di indipendenza, probabilità dell'unione e dell'intersezione di eventi. Variabili casuali e distribuzioni di probabilità particolari: Binomiale e Gaussiana. Correlazione e regressione.

METODI MATEMATICI PER LA FISICA: Richiami di algebra. Potenze, esponenziali e logaritmi. Funzioni esponenziali e logaritmiche.

FISICA APPLICATA: Unità di Misura e cambiamenti di unità di Misura. Grandezze scalari e vettoriali. Operazioni con vettori e proprietà dei vettori. Concetto di forza, momento di forza, equilibrio di un corpo rigido con esemplificazioni dell'equilibrio degli arti del corpo umano. Le leve e loro applicazioni. Elementi di ottica geometrica. Onde elettromagnetiche e spettro della radiazione elettromagnetica. Elementi di Ottica fisica: assorbimento e

diffusione della luce. Legge di Lambert-Beer. Struttura del nucleo. Radioattività. Legge del decadimento radioattivo. Interazione radiazione-materia.

BASI DI ELABORAZIONE DEI SEGNALI: Il modulo offre agli studenti una panoramica sui principi fondamentali per analizzare e manipolare segnali di diverse nature. Si esplorano concetti essenziali come la rappresentazione nel dominio del tempo e delle frequenze, le trasformate dei segnali, il campionamento e la quantizzazione, il filtraggio e le applicazioni pratiche. Questo corso fornisce una base teorica e pratica dell'elaborazione dei segnali, consentendo agli studenti di acquisire competenze trasferibili in molteplici ambiti, come comunicazioni, acustica, imaging e molto altro.

Prerequisiti

Modalità didattica

Lezioni erogative ed interattive in presenza

Materiale didattico

Fowler J., Jarvis P., Chevannes M., Statistica per le professioni sanitarie, 2006 Edises

D. Scannicchio, Fisica Biomedica, EDISES, D. Scannicchio, Esercizi e problemi di Fisica, Edizioni Unicopli, U.Amaldi, Fisica delle radiazioni, Boringhieri

Per tutti i Moduli: Diapositive e materiale didattico fornito dal docente

Periodo di erogazione dell'insegnamento

Primo semestre

Modalità di verifica del profitto e valutazione

Esame scritto più eventuale esame orale su richiesta dei docenti o dello studente. La prova scritta sarà costituita da:

- ? esercizi numerici e domande a risposta multipla di Statistica Medica
- ? esercizi numerici e domande a risposta multipla di Metodi Matematici per la Fisica
- ? esercizi numerici e domande a risposta multipla di Fisica Applicata
- ? domande a risposta multipla di Basi di Elaborazione dei Segnali

Orario di ricevimento

Su appuntamento richiesto via mail

Sustainable Development Goals

SALUTE E BENESSERE | ISTRUZIONE DI QUALITÁ