

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

SYLLABUS DEL CORSO

Nanomedicina

2526-1-F0902D003

Obiettivi

L'insegnamento si propone di far comprender le tecniche, gli strumenti e le strategie utilizzate per la progettazione, caratterizzazione e validazione delle nanotecnologie (e nanoparticelle) in campo medico, per la terapia e la diagnosi di malattie umane. L'insegnamento è proiettato verso la comprensione dell'iter di sviluppo di un (nano)farmaco, dal laboratorio alla clinica.

Conoscenza e capacità di comprensione - al termine dell'insegnamento di Nanomedicina lo studente sarà in grado di comprendere e integrare conoscenze interdisciplinari utili alla comprensione delle metodologie di ricerca nanobiotecnologica. Conoscere e comprendere gli ambiti di applicazione della nanomedicina.

Capacità di applicare conoscenza e comprensione - al termine dell'insegnamento lo studente dovrà essere in grado di utilizzare le conoscenze acquisite per comprendere le potenzialità delle nanotecnologie in ambito medico. Autonomia di giudizio - al termine dell'insegnamento, lo studente sarà in grado di comprendere l'iter di sviluppo di un (nano)farmaco, dal laboratorio alla clinica. Saper mettere insieme informazioni provenienti da diversi ambiti (biologia, medicina, tecnologia) per comprendere e interpretare la nanomedicina.

Abilità comunicative - alla fine dell'insegnamento lo studente avrà acquisito una terminologia scientifica adeguata e saprà esporre con proprietà di linguaggio gli argomenti trattati nel corso.

Capacità di apprendimento - alla fine dell'insegnamento lo studente sarà in grado di comprendere e valutare criticamente la letteratura scientifica riguardante la nanomedicina.

Contenuti sintetici

Concetti di nanotecnologia e nanomedicina. Conoscenza delle principali nanoparticelle utilizzate in medicina e delle tecniche per la loro sintesi, caratterizzazione ed impiego in ambito biomedico. Descrizione delle modalità di multi-funzionalizzazione di nanoparticelle. Applicazione biomedica di nanoparticelle per la terapia e diagnosi del cancro e di patologie neurologiche e neurodegenerative. Come si studia la farmacocinetica e biodistribuzione di nanoparticelle. Trafficking intracellulare di nanoparticelle. Biomimetica e medicina rigenerativa. Nanorobot e

biomateriali impiantabili (idrogeli).

Programma esteso

Lezioni frontali:

Descrizione dei più rilevanti tools utilizzati su nanoscala in medicina per la terapia (drug delivery) e la diagnostica (imaging). Nanoparticelle e nano-dispositivi. Liposomi, Solid-lipid nanoparticles, nanoparticelle polimeriche, nanoparticelle inorganiche. Tecniche per la fabbricazione, caratterizzazione e loro applicazioni. Targeting di materiali nanostrutturati a tessuti e cellule. Biomimetismo. Biocompatibilità. Nano-sistemi e strategie per la terapia e la diagnosi di Tumori e di malattie del Sistema Nervoso Centrale. Procedure per lo sviluppo di farmaci classici ed alternativi. Biosensori, nanorobot. Ingegneria tissutale con nanodispositivi. Applicazioni innovative di nanoparticelle (es. ipertermia, Cerenkov radiation). Biomateriali impiantabili per il rilascio controllato di farmaci e/o nanoparticelle.

Laboratorio:

Preparazione, funzionalizzazione, drug-loading e caratterizzazione di nanoparticelle a base lipidica. Analisi critica dei risultati per la potenziale traslabilità alle fasi pre-cliniche. Panoramica della strumentazione utile per la ricerca scientifica nel campo delle nanotecnologie e della nanomedicina.

Prerequisiti

Conoscenze di base di chimica, biochimica e biologia.

Modalità didattica

20 ore (10 lezioni da 2 ore): Didattica Erogativa (DE), Lezioni frontali, attività in presenza 8 ore (4 lezioni da 2 ore): Didattica Erogativa (DE), Lezioni frontali, attività in remoto sincrona 4 ore (2 attività da 2 ore): Didattica Interattiva (DI), Esercitazione, attività in presenza 24 ore (6 attività da 4 h): Didattica Interattiva (DI), Laboratorio, attività in presenza

Materiale didattico

Review e articoli pubblicati su riviste internazionali verranno indicati durante il corso. Materiale didattico utilizzato a lezione (slides). Tutto verrà caricato sulla piattaforma e-learning.

Testi consigliati:

- Understanding Nanomedicine An Introductory Textbook By Rob Burgess. ISBN 9789814316385. Jenny Stanford Publishing
- 2. The Handbook of Nanomedicine (English Edition) 3° Edizione By Kewal K. Jain. ISBN-10 1493983547. Humana Pr Inc

Periodo di erogazione dell'insegnamento

1° semestre

Modalità di verifica del profitto e valutazione

Esame: prova scritta individuale:

12 test a risposta chiusa (vero/falso, risposta multipla) da 2 punti ciascuna inerenti alle lezioni frontali (DE) 1 test a risposta chiusa (vero/falso, risposta multipla) da 2 punti inerente alle attività di laboratorio (DI)

1 domanda aperta (saggio breve) da massimo 4 punti inerente a tutto il programma da completare in 30 minuti.

L'esame è valutato positivamente con un punteggio pari o superiore a 18/30. Le domande proposte nella prova scritta saranno costruite in modo tale da indurre lo studente a ragionare dal punto di vista biochimico e bio/nanotecnologico, a comprendere le unità di misura e ad essere in grado di valutare le abilità e le competenze acquisite sulla base agli obiettivi del corso.

Non sono previste prove in itinere.

Orario di ricevimento

Su appuntamento scrivendo a: francesca.re1@unimib.it

Sustainable Development Goals

SALUTE E BENESSERE