Skip to main content
Side panel
Log in
Home
Percorso della pagina
Science
Master Degree
Data Science [F9101Q]
Courses
A.A. 2019-2020
1st year
Machine Learning
Sections
EXAM
Report guidelines
Course summary
Unità didattica
Course full name
Machine Learning
Course ID number
1920-1-F9101Q005-F9101Q005M
Report guidelines
Here you will find guidelines to write your machine learning report
2012 - Journal - Neurocomputing.pdf
Dilbert to teach.pdf
Machine Learning - Struttura del progetto.pdf
Presentation.pdf
Presenting data effectively BIS.pdf
Presenting data effectively.pdf
Some notes on writing.pdf
Download folder
◄ TUTORIAL - Deep Learning - Hands-on
Jump to...
Jump to...
Introduction
KNIME
KAGGLE
How to attend; lecture, practice, and interaction
KNIME (download and install)
R language (download and install)
Text Books
The Students-Instructor Forum
Announcements
Select your Master Degree
TUTORIAL - Deep Learning - Part I
TUTORIAL - Deep Learning - Part II
TUTORIAL - Deep Learning - Hands-on
Some well structured Report examples
LIST OF KAGGLE DATASETS
ML PROJECT EVALUATION CRITERIA
BUILD YOUR ML TEAM
EXAM QUIZZES TRAIN
ESITO ESAME 13 MAGGIO 2020 - Recupero del 24 Febbraio 2020 - Data Science
ESITO ESAME 13 MAGGIO 2020 - Recupero del 24 Febbraio 2020 - Non Data Science
ESITO ESAME 13 MAGGIO 2020 - Recupero del 24 Febbraio 2020 - Revisione voti *********
ESITO ESAME 25 GIUGNO 2020
Kirey Group Challenge - Video Presentation
Kirey Group Challenge - Q&A session
Some well structured Report examples ►
Machine Learning
Sections
General
THE EXPERTS CORNER
EXAM
EXAM SESSIONS
Side Initiatives
Home
Calendar