
LECTURE 3

Nash and Bayes-Nash Equilibria
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MAIN POINTS OF 

PREVIOUS LECTURE

22



Intelligent players anticipate opponents’ rational 

behavior implying iterative solutions

CRUCIAL PROBLEM

HOWEVER TO MAKE OPERATIVE THIS 

ANTICIPATION OF OPPONENTS’ RATIONAL 

BEHAVIOR, PLAYERS NEED TO KNOW 

1. OPPONENTS’ STRATEGY SETS

2. OPPONENTS’ PAYOFF FUNCTIONS

i.e.

THE GAME

However standard models do not specify 
players’ information on the game itself: 

information sets regard actions only



IMPERFECT INFORMATION 

VS

INCOMPLETE INFORMATION
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Imperfect Information vs. Incomplete

Information
• Standard models do not specify players’ information on the 

game itself: information sets regard actions only

• In standard game theory there is no formal tools to model 
information about the game

• Standard informal assumption:

The game is common knowledge, i.e. 

1. all the players know the game

2. All the players know that all the players know the 
game

3. Etc. ad infinitum
• If a game satisfies this assumption is called complete 

information game
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Imperfect Information vs. Incomplete

Information
Definitions
• Game of imperfect information:  one or more players do 

not know the full history of the game, i.e. previous moves. 

• Game of incomplete information:  the players have 
private information about the game, which we will call 
the state of nature. 

• We need new formal tools to deal with 
incomplete information: information 

sets are not enough since they 
regard players’ actions
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State of nature 1
Player 2
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0, 1
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1, 0

0, 11, 0 0, 1

1, 0 

State of nature 2

1, 0

Example 1: the problem when the true game 

being played is unknown - 1
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L R

p<0.5

p=Pr¹{s=State of 

nature 1} by player 1

Player 2

Player 1 rational behavior Player 2 rational behavior

Player 1

LRT

B

T

B

q=Pr²{s=State of 

nature 1} by player 2

Example 1: players’ best response as function of:
Prior belief

Opponent’s strategy

B

Tp>0.5

q>0.5q<0.5

L R
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• As the previous slide shows
– 1’s optimal strategy depends on

1. Prior belief p and

2. The strategy of 2, which in turn depend on

1. Prior belief q and

2. The strategy of 1, which in turn depend on

1. Prior belief p and

2. The strategy of 2, which in turn depend on …

• Therefore when we don’t know the s.o.n., it is not 
enough to have beliefs on it (first order beliefs), but we 
need beliefs on beliefs (second order beliefs), etc. i.e. 
we need

– Infinite hierarchy of beliefs

Example 1: the problem when the true game 

being played is unknown - 3
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• According to the Bayesian approach, each player has a 
belief on the unknown s.o.n. 

• But unlike to decision making problem, in an interactive 
situation we are naturally lead, as previously shown, to

– Infinite hierarchies of beliefs
• But this object is cumbersome and hardly manageable

• This is the explicit approach and its complexity was the 
main obstacle to the development of the theory of games 
of incomplete information

• Till a breakthrough by Harsanyi

Example 1: the problem when the true game 

being played is unknown - 4
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Bayesian games

and 

the Harsanyi approach 
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• The key to analyze games of incomplete 

information is to transform them into games of 

imperfect information by letting nature move first, 

randomly selecting each possible “state of nature” 

and “players’ information on it”, i.e. 

• Nature selects each player’s possible type
(Harsanyi transformation).

Imperfect Information vs. Incomplete

Information: Harsanyi idea

12



The notion of Bayesian game

• Using the Harsanyi approach, the situation of incomplete 

information is reinterpreted as a game of imperfect

information

• Nature makes the first move, choosing realizations of the 

random variables that determine

• each player’s TYPE, 

• i.e. each player’s PRIVATE INFORMATION ON 

THE RULE OF THE GAME, INCLUDING OTHER

PLAYERS’ POSSIBLE PRIVATE INFORMATION 

• Each players observes the realization of only his type

• This sort of game is called BAYESIAN GAME.
13



The notion of TYPE
• A PLAYER’S SET OF TYPES is a random variable, 

• its realization is a PLAYER’S TYPE representing the player’s 
private information.

• A type is a full description of

– Player’s beliefs on the rule of the game i.e. on 
state of nature

– Beliefs on other players’ beliefs on s.o.n. and its 
own beliefs

– Etc.

• NB: there is a circular element in the definition of type, 
which is unavoidable in interactive situations 

• i.e. the Harsanyi approach solves the problem of modelling 
incomplete information in a simple ingenious way at the cost 
of making the set of possible types potentially extremely 
complex 14



Types and infinite hierarchies of 

beliefs

15

Infinite 

hierarchies 

of beliefs

Types

???



• ui = utility function for i, ui(a,t) depends on both actions a and 

types t.

• normal form game G = {N;A1,...,An; u1,...,un}

• Bayesian game  = {N;A1,...,An; T1,...,Tn; p1,...,pn; u1,...,un}

• Ai = strategy set for i, actions in the Bayesian Game: 

a = (a1,...,an)  A = A1...An.

• Ti = type set for i, types:  t = (t1,...,tn)  T = T1...Tn

• pi = beliefs for i, pi(t-i | ti) = i's belief about types t-i given type 

ti.

Bayesian Games
(Harsanyi, Management Science 1967-8)
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• Beliefs {p1,...,pn} are consistent if they can be derived using
Bayes' rule from a common joint distribution p(t) on T; i.e.,
there exists p(t) such that

where

for all i and ti.

• Beliefs are consistent if nature moves first and types are
determined according to the common prior p(t) and each i is
informed only of ti.

• Plausible (?) if types are interpreted as full description of a
player’s private information

Bayesian Games

(Harsanyi, Management Science 1967-8)

p t |t
p(t)

p(t
i -i i
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
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Beliefs derived from common prior - 1

• EXAMPLE: joint & marginal probability

18

A  low costs A high costs Marginal

Pr of B costs

B low costs 0.45 0.05 0.5

B high costs 0.15 0.35 0.5

Marginal

Pr of A costs

0.6 0.4 1
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Beliefs derived from common prior - 2

• EXAMPLE: conditional probability 

Pr{B cost | A cost}

19

A INFORMATION

U
N

C
E

R
E

T
A

IN

E
V

E
N

T

A  low costs A high costs

B low costs 0.45/0.6=

=0.75

0.05/0.4=

=0.125

B high costs 0.15/0.6=

=0.25

0.35/0.4=

=0.875

19



Beliefs derived from common prior - 3
• EXAMPLE: conditional probability 

Pr{A cost | B cost}

20

B INFORMATION

U
N

C
E

R
E

T
A

IN

E
V

E
N

T

B  low costs B high costs

A low costs 0.45/0.5=

=0.9

0.15/0.5=

=0.3

A high costs 0.05/0.5=

=0.1

0.35/0.5=

=0.7
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Definition

• A strategy in a Bayesian game for i is a plan of action

for each of i's possible types

di: Ti → Ai

• As usual it says what to do in every possible

contingency (each of the possible types).
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Example 1: a modified prisoner’s dilemma with 

different possible payoffs

• Prisoner 2 has two possible different payoffs:

– With probability m the players’ payoffs are that of 
figure 1

– With probability 1-m the players’ payoffs are that of 
figure 2

– Player 2 knows his own payoffs

• Thus the players are possibly playing two different 
games, with player 2 informed of the true game 
(asymmetric information).
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The possible payoffs of player 2

DC C

0, -2

Figure 1
Player 2

Player 1

Player 2

Player 1

-10, -7

DC C

DC

C

DC

C

0, -2

-1, -10-1, -10 -5, -5

-10, -1

Figure 2

-5, -11
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The Harsanyi approach applied to 

example 1
• According to this approach each player’s preferences are 

determined by the realization of a random variable;

• The random variable’s  actual realization is observed 
only by the player

• Its ex ante probability distribution is assumed to be 
common knowledge among all the players

• Players’ types:
– player 1 set of types is the null set since player 1 has no 

private information: T1 = {}
– player 2 set of types has two element, the payoffs of figure 1 

and figure 2: T2 = {t’, t’’}

• Players’ Beliefs:
– p1{t’ | } = m
– p2{ | t’} = p2{ | t’’} = 1.
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Beliefs derived from common prior - 1

• EXAMPLE 1: joint & marginal probability

25

1 type

2 type 

Marginal

Pr of 2 type

t’ m m

t’’ 1-m 1-m

Marginal

Pr of 1 type

1 1
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Beliefs derived from common prior - 2

• EXAMPLE 1: conditional probability 

Pr{2 type | 1 type}

26

1 

INFORMATION
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T

2 type 

t’ m/1 = m

t’’ (1-m)/1 = 1-m
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Beliefs derived from common prior - 3
• EXAMPLE: conditional probability 

Pr{1 type | 2 type}

27

2 INFORMATION

U
N

C
E

R
E

T
A

I

N

E
V

E
N

T

1 type t’ ’’

 m/m = 1 (1-m)/(1-m)=1

27



The Extensive Form of example 1

Nature

m                            1                              1-m

C            DC                                       C               DC

2                                                            2

C            DC     C         DC                 C’           DC’   C’        DC’

-5

-5

-1

-10

-10

-1

0

-2
-5

-11

-1

-10
-10

-7

0   

- 2
28

𝑇 = 𝐹𝑖𝑔 1, ∅ , (𝐹𝑖𝑔 2, ∅) 𝑝 𝑡′ = 𝑃𝑟 𝐹𝑖𝑔 1, ∅ = 𝑚 ⇒
𝑝1 𝑡′|𝑡1 = 𝑃𝑟 𝐹𝑖𝑔 1|∅ = 𝑚 &  𝑝2 𝑡′|𝑡2 = 𝑃𝑟 ∅|𝐹𝑖𝑔 2 = 𝑃𝑟 ∅|𝐹𝑖𝑔 1 =1



The Bayesian strategic form of 

example 1

1

2
C-C’ C-DC’ DC-C’ DC-DC’

C

DC

-5,

-5m-11(1-m)
-5m-1(1-m),

-5m-10(1-m)

-1,

-10

-5,

-5m-11(1-m)

-10,

-1m-7(1-m)

-10m+0(1-m),

-1m-2(1-m)

0m-10(1-m),

-2m-7(1-m)

0,

-2
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SUMMING UP - 1

• BAYESIAN GAME: a game in which players are 

uncertain on payoff relevant parameters

• STATE OF NATURE: payoff relevant data. It is 

convenient to think of a s.o.n. as a full description of a 

game form

• TYPE: full description of player’s relevant 

characteristics, therefore it fully describes

1. Player’s beliefs (i.e. information) on s.o.n.

2. Player’s beliefs on others’ beliefs

3. Player’s beliefs on others’ beliefs on its beliefs

4. Etc. ad infinitum

30



SUMMING UP - 2

• STATE OF THE WORLD: a specification of s.o.n. 

and players’ types. i.e. of

1. Payoff relevant parameters

2. Beliefs of all levels

• COMMON PRIOR AND CONSISTENT BELIEFS: 

players’ beliefs are said to be consistent if they are 

derived from the same probability distribution (the 

common prior) by conditioning on each player’s 

private information. Therefore if beliefs are consistent, 

the only source of differences in beliefs is difference in 

information
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Nash equilibria

32
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Example 1

A           B              C          D

A

B

C

D

0, 7 2, 5 7, 0 0, 1

5, 2 3, 3 5, 2 0, 1

7, 0 2, 5 0, 7 0, 1

0, 0 0, -2 0, 0 10, -1
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Solution by ISUS and by 

rationalizability

• With both concepts, the solution is

{A, B, C} x {A, B, C}

i.e. there are 9 likely outcomes.

• PROBLEM: the forecast is too vague, we 

would like a more sharp prediction



Example 1 again
A             B             C          D

A

B

C

D

0, 7 2, 5 7, 0 0, 1

5, 2 3, 3 5, 2 0, 1

7, 0 2, 5 0, 7 0, 1

0, 0 0, -2 0, 0 10, -1
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Remark

Note that (B, B) has a peculiar characteristic: 

1. it is a profile such that each strategy is a best 

reply to the other strategy

2. Therefore if, for some unspecified reason, this 

profile is played, then nobody has an 

incentive to deviate.

This is not true for the other rationalizable outcomes.
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Example 1 another time
A            B             C          D

A

B

C

D

0, 7 2, 5 7, 0 0, 1

5, 2 3, 3 5, 2 0, 1

7, 0 2, 5 0, 7 0, 1

0, 0 0, -2 0, 0 10, -1
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An equilibrium concept as solution: 

Nash Equilibrium

u s u s s s S

s s s s s

i i i i i i

i i i n

(      

   

*
-
*

-
* *

-
*

+
* *

) ( , )

( , , , , , ).

 

=

for all

where 1 1 1 

For an n-person game in Normal form,  a 
strategy profile s*  S is a Nash 
equilibrium in pure strategies if for all i
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NASH  EQUILIBRIUM 

• NB: it is defined as  A STRATEGY PROFILE, not as a 
Cartesian product, like Rationalizability. 

• This depends on the fact that we are dealing with an 
equilibrium concept.

39



Non existence of pure strategy NE

Example 2: Matching Pennies 

• Each of two players simultaneously show a 

penny.

• If the pennies match (both heads or both tails), 

player 1 gets 2's penny.  Otherwise, player 2 

gets 1's penny.

40



Example 2 in Normal Form 

 

H 

T 1,-1 

T 

H -1, 1 

-1, 1 

1, -1 

2 

1 

No equilibrium in pure strategies
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Definition

An n-tuple of mixed strategies                           

is a Nash Equilibrium if for every i,

iiiiii uu  −        ),ˆ()ˆ(

( )n ˆ,...,ˆˆ
1=

42



Definitions - 1
• The best reply correspondence to        for a strategic 

form game G=(S,u) for each player i is 

• The best reply correspondence of the strategic form 

game G=(S,u) is 

 iiiiiiii

iiiii

uu

uBR
i

=

==

−

−−






ˆ      )ˆ,()(|

),()( maxarg

( )    therefore    :i i

i N

BR BR BR−



=  

i−
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i i

i i i i

i i i i i i i i i i

BR BR

u u





     

− −

− −



− − −

 = =
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Definitions

• * is a Nash equilibrium iff * BR(*)

• In words: 

• * is a Nash equilibrium 

iff

• * is a fixed point of the 

best reply correspondence

44



Three different topics

1. Existence of Nash equilibria  existence of a 

fixed point

2. Why Nash equilibria?

3. Calculations of Nash equilibria
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CONSIDERATIONS ON 

NASH EQUILIBRIA 
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INTERPRETATION OF NASH 

EQUILIBRIUM 

• FOUR POSSIBLE INTERPRETATIONS:

1. Nash equilibrium as eductive (introspective) solution

2. Nash equilibrium as rest point of some dynamic process

3. Nash equilibrium as Rational Expectations Equilibrium

4. Strategy configuration such that no players has an 
incentive to deviate 

47



Why Nash Equilibria? 
• Once one has selected the appropriate game, attention 

typically turns to equilibrium behavior. 

• Under the classical view of game theory, one should be 
able to deduce the equilibrium play from the specification 
of the game and the hypothesis that it is commonly known 
that the players are rational. 

• An analyst observing the game should be able to make 
such a deduction, as should the players in the game.

• This immediately answers an obvious question: 

• Why are we interested in the equilibrium of a game? 

• In the classical view, the equilibrium implication of a 
game will be obvious to rational players, and will just as 
obviously be reflected in their behavior.
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Problems with  Nash Equilibrium
Deduction from complete information

• Difficulties appeared in the attempt to show that 

Nash equilibrium could be deduced from the 

specification of the game and the hypotheses that 

the players are commonly known to be rational:

• common knowledge of rationality allowed one to 

infer only that players will restrict attention to 

rationalizable strategies.
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Problems with  Nash Equilibrium 
Multiplicity

• Multiple equilibria arise in many settings for many reasons. 

• How are we to identify the equilibrium implication of the game in 

the presence of multiple equilibria?

• A response to this question was the equilibrium refinements 

literature, which sought “refinement” criteria for limiting 

attention to a subset of the set of Nash equilibria. 

• For example, one might restrict attention to Nash equilibria that 

do not play weakly dominated strategies

• A different response is to accept multiplicity

1. focusing on results that depend only on the presumption that some 

equilibrium is chosen, without being specific as to which equilibrium

2. using empirical methods to point the way to an equilibrium

3. noting that in some cases, models with multiple equilibria may 

provide the best match for the interaction being studied 50



Answer to problems with  Nash Equilibrium

• In response, the classical view of game theory 
gave way to an instrumental view.

• In this view, the game is not a literal description 
of an interaction, but it is a model that one hopes 
is useful in studying that interaction. 

• Game-theoretic solution concepts should be 
understood in terms of their applications, and 
should be judged by the quantity and quality of 
their applications.

• The game is thus a deliberate approximation, 
designed to include important aspects of the 
interaction and exclude unimportant ones
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Example of the instrumental view

• The choice between the Cournot and Bertrand 
models hinges not on what one thinks firms 
actually do, but on which model gives the most 
useful insights. 

• Are we working in a setting in which competition 
between even two firms is enough to drive prices 
to marginal cost? If so, the Bertrand model may 
be appropriate. 

• Do we think that the entry of a new firm into the 
market is likely to decrease the profits of existing 
firms? If so, the Cournot model is likely to be 
appropriate

52



Game theoretic models

• An implication of the instrumental view is that 

making a model more realistic does not 

necessarily make it a better model. 

• It is obvious that making a model more 

complicated does not necessarily make it a better 

model

• a model as complicated as its intended 

application is also typically useless. 

• Even without extra complication, more realism 

need not be a step forward for a model
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More on the instrumental view
• The instrumental view complicates game theory. 

• A world of literal descriptions and perfectly rational players is typically more orderly 

than are approximations of a complicated world filled with people. 

• Consider the prisoners’ dilemma: 

• Will people defect in the prisoners’ dilemma? 

• In the classical view this is obvious since under this interpretation, the numbers in the 

payoff matrix are utilities indicating that the agents derives higher utility from defecting. 

• Asking whether the agent might cooperate is equivalent to asking whether we have gotten 

the game wrong. If the game is correct, there can be no outcome other than defection.

• Things are more complicated under an instrumental view. 

• First, the actions cooperate and defect are approximations of alternatives that may be 

much more complex. Cooperation may involve colluding in an oligopoly market or 

signing a nuclear arms agreement, while defection may involve flooding the market with 

increased output or installing an antiballistic missile shield. 

• In addition, we typically cannot hope to measure utilities, and the numbers in the cells are 

instead measures of profits or some other more-readily-measured quantity. 

• Will the players defect?

• Equivalently, have we chosen well in approximating the interaction as a prisoners’ 

dilemma? This can be a difficult question.
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Applications and solution concepts - 1
• In many applications, results hinge on selecting a particular equilibrium 

for study

• the choice of equilibrium concept, and the choice between multiple 

equilibria satisfying that concept, is part of the construction of the 

model, and should be informed by the details of the application one 

has in mind

• Examples:

– modeling an encounter between two agents that have limited 

experience and knowledge of one another, such as the US president 

and a dictator suspected of harboring weapons of mass destruction, a 

restriction to rationalizable strategies may be too demanding, since one 

might reasonably question whether there is common knowledge of 

rationality

– applying Nash equilibrium, and even applying a particular Nash 

equilibrium, in settings where the participants have enough historical 

or cultural experience with the game. We take it for granted that people 

will drive on the left in the United Kingdom and on the right in the 

United States
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Applications and solution concepts - 2

• Considerable work remains to be done on identifying both 

– which equilibrium concept we should be using and 

– which of the potentially many equilibria consistent with that concept 

should command our attention. 

• Keynes: “Economics is the science of thinking in terms of 

models joined to the art of choosing models which are 

relevant to the contemporary world” 

• Graduate courses in economics tend to focus on the science of 

working with models. 

• Progress on equilibrium selection will come from careful work 

on the art of choosing models.

• This is a joint choice involving both the game and the 

relevant equilibrium, and will typically depend on the setting 

to which the analysis is to be applied.
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CALCULATIONS OF 

EQUILIBRIA

• Simple examples of calculations of Nash 

equilibria
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Two-person, zero-sum game

1, -1

-1, 1

0, 0 

0, 0

Right

Left

Right

Player 2

Player 1 Left

0, 0 

0, 0 

0, 0 1, -1

-1, 1Center

Center
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Two-person, zero-sum game: best 

reply strategies for Player 1

1, -1

-1, 1

0, 0 

0, 0

Right

Left

Right

Player 2

Player 1 Left

0, 0 

0, 0 

0, 0 1, -1

-1, 1Center

Center
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Two-person, zero-sum game: best 
reply strategies for Player 2

1, -1

-1, 1

0, 0

0, 0

Right

Left

Right

Player 2

Player 1 Left

0, 0 

0, 0

0, 0 1, -1

-1, 1Center

Center
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Two-person, zero-sum game: Four 
equilibria

1, -1

-1, 1

0, 0

0, 0

Right

Left

Right

Player 2

Player 1 Left

0, 0 

0, 0

0, 0 1, -1

-1, 1Center

Center
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Three players game

Yes No

5, 5, 5

Player 3 - Yes

Player 2

Player 1

Player 2

Player 1

0, 0, 0

Yes No

Yes

No

Yes

No

0, 0, 0

0, 0, 00, 0, 0 0, 0, 0

0, 0, 0

Player 3 - No

0, 0, 0
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Three players game: best reply 
strategies for player 1

Yes No

5, 5, 5

Player 3 - Yes

Player 2

Player 1

Player 2

Player 1

0, 0, 0

Yes No

Yes

No

Yes

No

0, 0, 0

0, 0, 00, 0, 0 0, 0, 0

0, 0, 0

Player 3 - No

0, 0, 0
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Three players game: best reply 

strategies for player 2

Yes No

5, 5, 5

Player 3 - Yes

Player 2

Player 1

Player 2

Player 1

0, 0, 0

Yes No

Yes

No

Yes

No

0, 0, 0

0, 0, 00, 0, 0 0, 0, 0

0, 0, 0

Player 3 - No

0, 0, 0
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Three players game: best reply 

strategies for player 3

Yes No

5, 5, 5

Player 3 - Yes

Player 2

Player 1

Player 2

Player 1

0, 0, 0

Yes No

Yes

No

Yes

No

0, 0, 0

0, 0, 00, 0, 0 0, 0, 0

0, 0, 0

Player 3 - No

0, 0, 0
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Three players game: Five pure 

strategy equilibria

Yes No

5, 5, 5

Player 3 - Yes

Player 2

Player 1

Player 2

Player 1

0, 0, 0

Yes No

Yes

No

Yes

No

0, 0, 0

0, 0, 00, 0, 0 0, 0, 0

0, 0, 0

Player 3 - No

0, 0, 0
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Matching Pennies: The payoff 

matrix 

+1, -1

-1, +1

-1, +1

+1, -1

Heads Tails

Heads

Tails

Player 2

Player 1
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Matching Pennies: No equilibrium in 

pure strategies

+1, -1

-1, +1

-1, +1

+1, -1

Heads Tails

Heads

Tails

Player 2

Player 1

All Best Responses are underlined.
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Computing Mixed Strategy 

Equilibria in 2×2 Games

• Solution criterion: each pure strategy in a mixed 

strategy equilibrium pays the same at equilibrium

• Each pure strategy not in a mixed strategy 

equilibrium pays less

• Detailed calculations for Matching Pennies 

69



Matching Pennies: What 

about mixed strategies?

+1, -1

-1, +1

-1, +1

+1, -1

h t

H

T

21

x

1- yy

1- x

x, y  between 0 and 1

That is,  0  x  1 and  0  y  1

probability

probability
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Need to calculate player 1’s expected 

utility from player 2’s mixed strategy

+1, -1

-1, +1

-1, +1

+1, -1

h t

H

T

21

1- yy

EU1(H) = y × 1 + (1- y) × -1 = 2y - 1

EU1(T) = y × -1 + (1- y) × 1 = 1 - 2y

probability

EU1:

2y - 1

1 - 2y

71



Need to calculate player 2’s expected 

utility from player 1’s mixed strategy

+1, -1

-1, +1

-1, +1

+1, -1

h t

H

T

2
1

x

1- x

EU2(h) = x × -1 + (1- x) × 1 = 1 - 2x

EU2(t) = x × 1 + (1- x) × -1 = 2x - 1

probability

EU2:         1 - 2x          2x - 1
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In equilibrium, Player 1 is willing to randomize 

only when he is indifferent between H and T

EU1(H) = y × 1 + (1- y) × -1 = 2y - 1             

EU1(T) = y × -1 + (1- y) × 1 = 1 - 2y

In equilibrium: EU1(H) = EU1(T)

 2y - 1 = 1 - 2y

 4y = 2

 y = ½     

 1 - y = 1 - ½ = ½

 y = 1 - y = ½
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Similarly, Player 2 is willing to randomize 

only when she is indifferent between H and T

Player 2’s Conditions:                                     

EU2(h) = x × -1 + (1- x) × 1 = 1 - 2x 

EU2(t) = x × 1 + (1- x) × -1 = 2x - 1

In equilibrium: EU2(h) = EU2(t) 

 1 - 2x = 2x - 1 

 x = ½    and   1 - x = 1 - ½ = ½

 x = 1 - x = ½
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Matching Pennies:

Equilibrium in mixed strategies

+1, -1

-1, +1

-1, +1

+1, -1

h t

H

T

21

½

½½

½

EU2: 0 =          0

probability

probability
EU1:

0

||

0

Each player is playing a best response to the 

other!
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Row randomizes to make Column 

indifferent.

Column randomizes to make Row 

indifferent.

Then each player is playing a best 

response to the other.

Mixed strategies are not intuitive:

You randomize to make me 

indifferent
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• GENERAL WAY OF 

CALCULATING THE SET 

OF NASH EQUILIBRIA

• THE USE OF BEST REPLY 

CORRESPONDENCES
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Battle of sexes: the set of Nash 

equilibria in pure and mixed strategies

3, 1

0, 0

0, 0

1, 3

h t

H

T

21

x

1- yy

1- x

x, y  between 0 and 1

That is,  0  x  1 and  0  y  1

probability

probability
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Need to calculate player 1’s expected 

utility from player 2’s mixed strategy

3, 1

0, 0

0, 0

1, 3

h t

H

T

21

1- yy

EU1(H) = y × 3 + (1- y) × 0 = 3y 

EU1(T) = y × 0 + (1- y) × 1 = 1 - y

probability

EU1:

3y 

1 - y
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Player 1 best reply depends on player 2 mixed 

strategy

EU1(H) = y × 3 + (1- y) × 0 = 3y                     

EU1(T) = y × 0 + (1- y) × 1 = 1 - y

1 best reply:  H iff EU1(H) > EU1(T)

 3y > 1 - y

 4y > 1

 y > 1/4     
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The best reply correspondence of player 1









=

==

=

==

.4/1)(0

4/1)(]1,0[

4/1)(1

)(

2

2

2

1

hyif

hyif

hyif

Hx








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Need to calculate player 2’s expected 

utility from player 1’s mixed strategy

3, 1

0, 0

0, 0

1, 3

h t

H

T

2
1

x

1- x

EU2(h) = x × 1 + (1- x) × 0 = x

EU2(t) = x × 0 + (1- x) × 3 = 3 - 3x

probability

EU2:           x            3 - 3x
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Player 2 best reply depends on player 1 mixed 

strategy

EU2(h) = x × 1 + (1- x) × 0 = x                        

EU2(t) = x × 0 + (1- x) × 3 = 3 – 3x

2 best reply: h   iff   EU2(h) > EU2(t)

 x > 3 - 3x

 4x > 3

 x > 3/4     
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The best reply correspondence of player 2









=

==

=

==

.4/3)(0

4/3)(]1,0[

4/3)(1

)(

1

1

1

2

Hxif

Hxif

Hxif

hy








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The set of Nash equilibria using best 

reply correspondences











=



=











=



=

.4/30

4/3]1,0[

4/31

  

and

.4/10

4/1]1,0[

4/11

  Thus

xif

xif

xif

y

yif

yif

yif

x
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The set of Nash equilibria using best 

reply correspondences

y

Pl. 1= black

1

Pl.2=blue

1                                  x
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The set of Nash Equilibria in the 

battle of sexes

 

 

 .0)(,0)(

4/1)(,4/3)(

1)(,1)(

21

21

21

==

==

===

hH

hH

hHNE












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APPLYING THESE 

SOLUTION CONCEPTS

TO BAYESIAN GAMES
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Example 1: a modified prisoner’s dilemma with 

different possible payoffs

• Prisoner 2 has two possible different payoffs:

– With probability m the players’ payoffs are that of 
figure 1

– With probability 1-m the players’ payoffs are that of 
figure 2

– Player 2 knows his own payoffs

• Thus the players are possibly playing two different 
games, with player 2 informed of the true game 
(asymmetric information).
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The possible payoffs of player 2

DC C

0, -2

Figure 1
Player 2

Player 1

Player 2

Player 1

-10, -7

DC C

DC

C

DC

C

0, -2

-1, -10-1, -10 -5, -5

-10, -1

Figure 2

-5, -11
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The Extensive Form of example 1

Nature

m                       1                      1-m

C            DC                                     C                DC

2                                                          2

C         DC       C         DC                 C’         DC’    C’        DC’

-5

-5

-1

-10

-10

-1

0

-2
-5

-11

-1

-10
-10

-7

0

-291



The Bayesian strategic form of 

example 1

1

2
C-C’ C-DC’ DC-C’ DC-DC’

C

DC

-5,

-5m-11(1-m)
-5m-1(1-m),

-5m-10(1-m)

-1,

-10

-m-5(1-m),

-10m-11(1-m)

-10,

-1m-7(1-m)

-10m+0(1-m),

-1m-2(1-m)

0m-10(1-m),

-2m-7(1-m)

0,

-2
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Definitions

• A strategy in a Bayesian game for i is a plan of

action for each of i's possible types

di:Ti→Ai it says what to do in every possible

contingency (each of the possible types).

• A strategy profile d = (d1,...,dn) is a Bayes-Nash 

Equilibrium of  if

   ));(),('());(),((

'   ,

iiiiiitiiiiiit

i

ttdtduEttdtduE

di

−−−− 


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• Existence of a Bayes-Nash Equilibrium when the 
type sets and pure-strategy spaces are finite follows 
from the standard existence theorem for finite games.

• Given consistent beliefs, a Bayes-Nash 
Equilibrium of  is simply a Nash equilibrium of 
the game with imperfect information in which 
nature moves first.

• Any game of incomplete information with consistent 
beliefs can be transformed into a standard normal 
form game.

Bayes-Nash Equilibrium
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The Bayes-Nash equilibria of the 

game of example 1 when m=0.5

1

2
C-C’ C-DC’ DC-C’ DC-DC’

C

DC

-5, -8 -3, -7.5 -1, -10-3, -8

-10, -4 -5, -1.5 -5, -4.5 0, -2

95



• GENERAL WAY OF 

CALCULATING THE SET 

OF NASH EQUILIBRIA

• THE USE OF BEST REPLY 

CORRESPONDENCES
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Further example
• Consider a partnership between two people:

– They share a profit 

P = 4(x + y + 0.25xy) 
– that depends on their effort, x and y

– The effort is any real number in [0,4] and cost to each player                 
respectively

– The players choose the effort simultaneously and 
indipendently.

– The game in strategic form is:

22 y  and x

 

2

2

2

1

)25.0(2),(

)25.0(2),(

  ],4,0[       ,2,1

yxyyxyxv

xxyyxyxv

SN i

−++=

−++=

==
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First best: Pareto efficient efforts

• Find x, y to maximize the joint profit 

2 24( 0.25 )

:    4 y-2x 0  and  4 2 0

4    4.FB FB

x y xy x y

FOC x y

x y

+ + − −

+ = + − =

= =
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• Find the best reply function:

125.0)(025.02

125.0)(025.02

2
2

1
1

+===−+=




+===−+=




xxBRyyx
y

v

yyBRxxy
x

v

Non cooperative solution
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• Find the Nash equilibria:

1

2

4
1

( ) 0.25 1 1.25 3
16

( ) 0.25 1 4
0.25 1

3

x
x BR y y x x

y BR x x
y x y


= = = + = +  

= =  
= = +  = + = 



Graphically

x

y

4

4

Br2

Br1
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Applications

101



Electoral 

Competition

102



Electoral Competition

• The players are 2 candidates.

• A policy is a real number k, referred to as a 
“position.”

• After candidates choose positions, each citizen votes 
for candidate with the policy she prefers.

• The candidate who obtains the most votes wins. 
Candidates care only about winning.

• Voters are a continuum with diverse ideologies y, 
with cumulative distribution F. For any k, a voter 
with ideology y is indifferent policies y - k and y + k.

• Median m is such that 1/2 of voters' ideologies 

y > m & 1/2 of ideologies y < m : F (m) = 1/2.
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• Fix x2 of candidate 2 and consider 1’s choice. 

• Suppose x2 < m

• If candidate 1 chooses x1 < x2 then she wins the 

votes with ideology y < ½ ( x1 + x2 ). 

Because ½ ( x1 + x2 ) < x2 < m, then 

F(½ ( x1 + x2 ) ) < F(m)= ½,  so that  candidate 1 

wins less than ½ of the votes and loses the election.

Best Response Functions - 1

x1          x2 m                

x2 m                



• If x1 > x2, then 1 wins the votes of ideology 

y > ½ ( x1 + x2 ).  

• She wins the election if she get more than ½ of the 

votes, i.e. if and only if 

1 – F(½ ( x1 + x2 )) > ½   F(½ ( x1 + x2 )) < ½ =F(m)

 ½ ( x1 + x2 ) < m  x1 < 2m - x2.

• So, BR1 (x2) = {x1 : x2 < x1 < 2m - x2 } for x2 < m.

Best Response Functions - 2

x2             x1 m                
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• If candidate 1 chooses x1 > x2 then she wins the votes 

with ideology y > ½ ( x1 + x2 ). 

Because  ½ ( x1 + x2 ) >x2 > m, then 1- F(½ ( x1 + x2 ) ) 

<1- F(m) = ½, so candidate 1 wins less than ½ of the 

votes and loses the election.

m     x2               x1 
106

Best Response Functions - 3

• Suppose x2 > m

m x2



• If x1 < x2, then 1 wins the votes of ideology 

y < ½ ( x1 + x2 ).  

• She wins the election if she get more than ½ of the 

votes, i.e. if and only if 

F(½ ( x1 + x2 )) > ½ = F(m)   ½ ( x1 + x2 ) > m 

 x1 > 2m - x2.

• So, BR1 (x2) = {x1 : 2m - x2 < x1 < x2 } for x2 > m.

Best Response Functions - 4

m     x1         x2
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• If x2 = m, then player 1 loses the election unless she 

plays x1 = m.  So BR1 (m) = {m}.

x1 = m = x2
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Best Response Functions - 5



Player 1’s best response correspondence.

x1
m

2m

x2
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 
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 
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x BR x m x m
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Player 2’s best response correspondence

By symmetry

x1
m

2m

x2
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The unique Nash equilibrium.

x1
m

2m

x2

111

* *

1 2x x m= =

m

2m

1 2 2x x m= − +

1 2x x=

Overlapping the best-response correspondences, the Nash Equilibrium is 

(m, m). 

The candidates’ political platforms converge to the median policy.

Intuitively, consider any pair of platforms  (x1, x2) other than (m, m).  

Candidate 1 can win the election by deviating and locating x’1 closer to 

m than x2.



Providing a 

Public Good
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Providing a public good

• A public good is provided to a group of people if 
at least one person is willing to pay the cost of 
the good.

• Assume that 
1. the people differ in their valuations of the good, and 

2. each person knows only her own valuation.  

3. the number of individuals be n, 

4. the cost of the good be c > 0, 

5. individual i’s payoff if the good is provided be vi. If the 
good is not provided then each individual’s payoff is 0. 

• Each individual i knows her own valuation vi. She 
does not know anyone else’s valuation, but knows 
that all valuations are at least 0 and at most 1, and 
that 0 < c < 1. 
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• The probability that any one individual’s valuation is 
at most v is F(v), independent of all other individuals’ 
valuations, where the cumulative distribution 
function F is continuous and increasing. 

• All n individuals simultaneously submit contributions 
of either c or 0 (no intermediate contributions are 
allowed). 

• If all individuals submit 0 then the good is not 
provided and each individual’s payoff is 0. 

• If at least one individual submits c then the good is 
provided, each individual i who submits c obtains the 
payoff vi − c, and each individual i who submits 0 
obtains the payoff vi.
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Bayesian Game Representation

• Players: The set of n individuals.

• States: The set of all profiles (v1, . . . , vn) of 
valuations, where 0 < vi < 1 for all i.

• Actions: Each player’s set of actions is {0, c}.

• Types: The set of types Ti of each player i is given 

by Ti (v1, . . . , vn) = vi.

• Beliefs: Each type of player i assigns 
probability 

F(v1)F(v2) · · · F(vi −1)F(vi+1) · · · F(vn) 

to the event that the valuation of every other 
player j is at most vj.
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• Payoff functions: Player i’s payoff in state (v1, . . . , vn) 
is 
– ui(v1, . . . , vn) = 0 if no one contributes, 

– ui(v1, . . . , vn) = vi if i does not contribute but some other 
player does, 

– ui(v1, . . . , vn) = vi − c if i contributes.

• Strategies: fi : vi → {C, NC}

• Result 1:
– This game has a pure strategy Bayes-Nash equilibrium such 

that  
• each type vj of player i with vj ≥ c contributes, 

• whereas every other type of player i, and all types of every other 
player, do not contribute.

– Proof: no player has an incentive to deviate. 

Indeed, if player i does not contributes goes from a positive 

payoff to 0, while if the other players decide to contribute 

would incur in a cost without increasing the gross payoff v.
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• Result 2: The game has a symmetric Bayes-Nash equilibrium in 

which every player i contributes if and only if vi ≥ v∗.
– Proof:

– Consider player i. Suppose that every other player j contributes if and 
only if vj ≥ v∗. 

– The probability that at least one of the other players contributes is 1− 
(F(v∗))n−1.

– Player i’s tipe vj expected payoff is [1 − (F(v∗))n−1]vj if she does not 
contribute and vj − c if she does contribute.

– The conditions for player i tipe vj to not contribute when vj < v∗ and 
contribute when vj ≥ v∗ are: 

1. (1−(F(v∗))n−1)vj ≥  vj−c if vj< v∗, 

2. (1−(F(v∗))n−1)vj ≤  vj−c if vj ≥ v∗:

i.e.

1. vj(F(v∗))n−1 ≤  c if vj < v∗, 

2. vj(F(v∗))n−1 ≥  c if vj ≥ v∗.

– Hence, in equilibrium, v∗(F(v∗))n−1 = c.
– The equilibrium v∗ is the solution to this equation, and it is easy to show 

that it exists under general conditions
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• Properties of the symmetric equilibrium:

• As the number of individuals increases, is the good more or 

less likely to be provided in this equilibrium? 

• The probability that the good is provided is the probability 
that at least for one i, vj ≥ v∗, which is equal to 1 − (F(v∗))n.

• In equilibrium, this probability is equal to 1 − cF(v∗)/v∗. 

• Properties of the equilibrium v∗:

• As n increases, for any v∗ the value of (F(v∗))n−1 decreases, 
and thus v∗(F(v∗))n−1 decreases. 

• The value of v∗ then should increases as n increases. 

• As n increases the change in the probability that the good is 
provided increases if F(v∗)/v∗ decreases in v∗, whereas it 
decreases if F(v∗)/v∗ increases in v∗. 

• If F is uniform, F(v∗)/v∗ decreases in v∗, so that the 
probability increases as n increases.
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Juries
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Juries
• In a trial, jurors are presented with evidence on the 

guilt or innocence of a defendant. They may interpret 
the evidence differently. 

• Each juror votes either to convict or acquit the 
defendant. 

• A unanimous verdict is required for conviction: the 
defendant is convicted if and only if every juror votes 
to convict her. 

• In deciding how to vote, each juror considers the costs 
of convicting an innocent person and of acquitting a 
guilty person. She must consider also the likely effect 
of her vote on the outcome, which depends on the 
other jurors’ votes.
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• We model the strategic interaction between the jurors as a 
Bayesian game.

• Each juror comes to the trial with the belief that the 
defendant is guilty with probability π .

• Given the defendant’s true statuses (guilty and innocent), 
each juror receives a signal on the defendant guilty.  

• Denote the probability of any given juror’s to receive 
– the signal “guilty” when the defendant is guilty by p, and the 

probability that 

– the signal is “innocent” when the defendant is innocent by q. 

• Jurors are more likely than not to interpret the evidence 
correctly: 

• p > 1/2 and q > 1/2, and hence p > 1 − q.
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• Each juror wishes to convict a guilty defendant and acquit an innocent one. 

• Each juror’s payoffs are: 

▪ 0 if guilty defendant convicted or innocent defendant acquitted 

▪ −z if innocent defendant convicted 

▪ −(1 − z) if guilty defendant acquitted.

• Let r be the probability of the defendant’s guilt, given a juror’s information. 

• Her expected payoff if the defendant is acquitted is 

−r(1 − z) + (1 − r) · 0 = −r(1 − z) 

and her expected payoff if the defendant is convicted is 

r · 0 − (1 − r)z = −(1 −r)z. 

• She prefers the defendant to be acquitted if 

−r(1 − z) > −(1 −r)z  r(1 − z) < (1 −r)z 

r −rz < z −rz  r < z.

Conclusion:

– defendant acquitted if        r < z

– defendant is convicted if    r > z
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We may now formulate the trial as a Bayesian game. 

• Players A set of n jurors.

• States The set of states is the set of all lists 

• (X, s1, . . . , sn) where 

– X ∈ {G, I} X = G if the defendant is guilty, X = I if she is 
innocent,

– sj ∈ {g, ng} for every juror j, sj = g if player j receives the signal 

“guilty,” and sj = ng if player j receives the signal “innocent”.

• Actions The set of actions of each player is {C, Q}, 

– C is voting to convict, and 

– Q is voting to acquit.

• Types The set of types for each player j is each player’s 
signal sj ∈ {g, ng}: τj(X, s1, . . . , sn) = sj (each juror is informed 
only of her own signal).
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• Beliefs
– Type g of a player i believes that the state is 

• (G, s1, . . . , sn) with probability πpk−1(1− p)n-k and 

• (I, s1, . . . , sn) with probability (1−π)qk−1(1− q)n-k, 

– where k is the number of players j (including i) for 

whom sj=g. 

– Type ng believes that the state is 

• (G, s1, . . . , sn) with probability πpk(1− p)n-k-1 and 

• (I, s1, . . . , sn) with probability (1−π)qk(1− q)n-k-1, 

– where k is the number of players j (including i) for 

whom sj=g. 
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• Payoff functions 

• The payoff function of each player i is:

– ui(a, ω) = 0 if a = (A), ω1=I or if a = (C), ω1=G,

– ui(a, ω) = −z if a = (C) and ω1 = I

– ui(a, ω) = −(1 − z) if a = (A) and ω1 = G,

where ω1 is the first component of the state, giving 

the defendant’s true status.

125125



Nash Equilibrium

• One juror Suppose there is a single juror with signal 

(type) ng. 

To determine whether she prefers conviction or 

acquittal find the probability Pr(G|ng), that the 

defendant’s is guilty. By the Bayes’ Rule:

Pr(G|ng) = 

Pr(ng|G)Pr(G)/[Pr(ng|G)Pr(G)+Pr(ng|I)Pr(I)]

= (1 − p)π /[(1 − p)π + q(1 − π)].

• The juror votes Acquittal if and only if 

z ≥  r = (1 − p)π / [(1 − p)π + q(1 − π)].
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• Suppose there are n jurors. 

• Suppose that in equilibrium every juror other than juror 1 
votes acquit if her signal is ng and convict if it is g. 

• Consider type ng of juror 1. Her vote has no effect on the 
outcome unless every other juror’s signal is g. 

• Hence, she votes Acquittal if the probability that the 
defendant is guilty, given juror 1’s signal is ng and every 
other juror’s signal is g, is greater than z:

Pr(G|ng,g,..., g) > z. 

• where Pr(G|ng,g,...,g) = 

=Pr(ng,g,...,g|G)Pr(G)/[Pr(ng,g,...,g|G)Pr(G)+Pr(ng,g,...,g|I)Pr(I)]=

=  (1 − p)pn-1π/[(1 − p) pn-1π + q(1 − q) n-1(1 − π)].

• Type ng of juror 1 optimally votes for acquittal if 

z  ≥  (1 − p)pn-1π/[(1 − p)pn-1π+q(1 − q)n-1(1 − π)] 

= 1 /[1 +q/(1 − p) [(1 − q )/p] n-1 (1−π)/π].
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• Under some conditions there is a symmetric mixed strategy 
equilibrium in which each type g juror votes for conviction, 
and each type ng juror randomizes.

• Denote by β such mixed strategy of each juror. 

• Each type ng juror is indifferent between voting conviction and 
acquittal. Hence the mixed strategy β is such that:

z  =  Pr(G|signal b, n−1 votes for C) 

=  Pr(ng|G)(Pr(vote C| G))n−1Pr(G) / 

[Pr(ng|G)(Pr(voteC|G))n−1Pr(G)+Pr(ng|I)(Pr(vote C|I))n−1Pr(I)] =

= (1−p)(p+(1−p)β(C)) n−1π/

[(1−p)(p+(1−p)β(C))n−1π +q(1−q+qβ(C)) n−1(1 − π)].

• The condition that this probability equals z implies 

(1−p)(p+(1−p)β(C))n−1π(1 − z) = q(1 − q + qβ(C))n−1(1 − π)z
hence 

β(C) = [pX − (1 − q)] /[ q − (1 − p)X], 

where 

X = [π(1 − p)(1 − z)/((1 − π)qz)]1/(n-1)
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• When n is large, X is close to 1, and hence β(C) is 

close to 1: a juror who interprets the evidence as 

pointing to innocence very likely nonetheless 

votes for conviction. 

• An interesting property of this equilibrium is that 

the probability that an innocent defendant is 

convicted increases as n increases: the larger the 

jury, the more likely an innocent defendant is to 

be convicted.
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