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1 Introduction

Text mining is a burgeoning new field that attempts to glean meaningful information from natural
language text. It may be loosely characterized as the process of analyzing text to extract
information that is useful for particular purposes. Compared with the kind of data stored in
databases, text is unstructured, amorphous, and difficult to deal with algorithmically. Nevertheless,
in modern culture, text is the most common vehicle for the formal exchange of information. The
field of text mining usually deals with texts whose function is the communication of factual
information or opinions, and the motivation for trying to extract information from such text
automatically is compelling—even if success is only partial.

Four years ago, Hearst [Hearst, 1999] wrote that the nascent field of “text data mining” had “a
name and a fair amount of hype, but as yet almost no practitioners.” It seems that even the name is
unclear: the phrase “text mining” appears 17 times as often as “text data mining” on the Web,
according to a popular search engine (and “data mining” occurs 500 times as often). Moreover, the
meaning of either phrase is by no means clear: Hearst defines data mining, information access, and
corpus-based computational linguistics and discusses the relationship of these to text data
mining —but does not define that term. The literature on data mining is far more extensive, and
also more focused: there are numerous textbooks and critical reviews that trace its development
from roots in machine learning and statistics. Text mining emerged at an unfortunate time in
history. Data mining was able to ride the back of the high technology extravaganza throughout the
1990s, and became firmly established as a widely-used practical technology —though the dot com
crash may have hit it harder than other areas [Franklin, 2002]. Text mining, in contrast, emerged
just before the market crash—the first workshops were held at the International Machine Learning
Conference in July 1999 and the International Joint Conference on Artificial Intelligence in
August 1999 —and missed the opportunity to gain a solid foothold during the boom years.

The phrase “text mining” is generally used to denote any system that analyzes large quantities of
natural language text and detects lexical or linguistic usage patterns in an attempt to extract
probably useful (although only probably correct) information [Sebastiani, 2002]. In discussing a
topic that lacks a generally accepted definition in a practical Handbook such as this, I have chosen
to cast the net widely and take a liberal viewpoint of what should be included, rather than
attempting a clear-cut characterization that will inevitably restrict the scope of what is covered.

The remainder of this section discusses the relationship between text mining and data mining, and
between text mining and natural language processing, to air important issues concerning the
meaning of the term. The article’s major section follows: an introduction to the great variety of
tasks that involve mining plain text. We then examine the additional leverage that can be obtained
when mining semi-structured text such as pages of the World-Wide Web, which opens up a range



of new techniques that do not apply to plain text. Following that we indicate, by example, what
automatic text mining techniques may aspire to in the future by briefly describing how human
“text miners” who are information researchers rather than subject-matter experts may be able to
discover new scientific hypotheses solely by analyzing the literature. Finally we review some basic
techniques that underpin text mining systems, and look at software tools that are available to help
with the work.

Text mining and data mining

Just as data mining can be loosely described as looking for patterns in data, text mining is about
looking for patterns in text. However, the superficial similarity between the two conceals real
differences. Data mining can be more fully characterized as the extraction of implicit, previously
unknown, and potentially useful information from data [Witten and Frank, 2000]. The information
is implicit in the input data: it is hidden, unknown, and could hardly be extracted without recourse
to automatic techniques of data mining. With text mining, however, the information to be extracted
is clearly and explicitly stated in the text. It’s not hidden at all—most authors go to great pains to
make sure that they express themselves clearly and unambiguously —and, from a human point of
view, the only sense in which it is “previously unknown” is that human resource restrictions make
it infeasible for people to read the text themselves. The problem, of course, is that the information
is not couched in a manner that is amenable to automatic processing. Text mining strives to bring
it out of the text in a form that is suitable for consumption by computers directly, with no need for
a human intermediary.

Though there is a clear difference philosophically, from the computer’s point of view the problems
are quite similar. Text is just as opaque as raw data when it comes to extracting information—
probably more so.

Another requirement that is common to both data and text mining is that the information extracted
should be “potentially useful.” In one sense, this means actionable—capable of providing a basis
for actions to be taken automatically. In the case of data mining, this notion can be expressed in a
relatively domain-independent way: actionable patterns are ones that allow non-trivial predictions
to be made on new data from the same source. Performance can be measured by counting
successes and failures, statistical techniques can be applied to compare different data mining
methods on the same problem, and so on. However, in many text mining situations it is far harder
to characterize what “actionable” means in a way that is independent of the particular domain at
hand. This makes it difficult to find fair and objective measures of success.

In many data mining applications, “potentially useful” is given a different interpretation: the key
for success is that the information extracted must be comprehensible in that it helps to explain the
data. This is necessary whenever the result is intended for human consumption rather than (or as
well as) a basis for automatic action. This criterion is less applicable to text mining because, unlike
data mining, the input itself is comprehensible. Text mining with comprehensible output is
tantamount to summarizing salient features from a large body of text, which is a subfield in its
own right: text summarization.

Text mining and natural language processing

Text mining appears to embrace the whole of automatic natural language processing and, arguably,
far more besides—for example, analysis of linkage structures such as citations in the academic
literature and hyperlinks in the Web literature, both useful sources of information that lie outside
the traditional domain of natural language processing. But, in fact, most text mining efforts
consciously shun the deeper, cognitive, aspects of classic natural language processing in favor of
shallower techniques more akin to those used in practical information retrieval.

The reason is best understood in the context of the historical development of the subject of natural
language processing. The field’s roots lie in automatic translation projects in the late 1940s and
early 1950s, whose aficionados assumed that strategies based on word-for-word translation would
provide decent and useful rough translations that could easily be honed into something more
accurate using techniques based on elementary syntactic analysis. But the sole outcome of these



high-profile, heavily-funded projects was the sobering realization that natural language, even at an
illiterate child’s level, is an astonishingly sophisticated medium that does not succumb to
simplistic techniques. It depends crucially on what we regard as “common-sense” knowledge,
which despite—or, more likely, because of —its everyday nature is exceptionally hard to encode
and utilize in algorithmic form [Lenat, 1995].

As a result of these embarrassing and much-publicized failures, researchers withdrew into “toy
worlds” —notably the “blocks world” of geometric objects, shapes, colors, and stacking
operations—whose semantics are clear and possible to encode explicitly. But it gradually became
apparent that success in toy worlds, though initially impressive, does not translate into success on
realistic pieces of text. Toy-world techniques deal well with artificially-constructed sentences of
what one might call the “Dick and Jane” variety after the well-known series of eponymous
children’s stories. But they fail dismally when confronted with real text, whether painstakingly
constructed and edited (like this article) or produced under real-time constraints (like informal
conversation).

Meanwhile, researchers in other areas simply had to deal with real text, with all its vagaries,
idiosyncrasies, and errors. Compression schemes, for example, must work well with all
documents, whatever their contents, and avoid catastrophic failure even when processing
outrageously deviant files (such as binary files, or completely random input). Information retrieval
systems must index documents of all types and allow them to be located effectively whatever their
subject matter or linguistic correctness. Key-phrase extraction and text summarization algorithms
have to do a decent job on any text file. Practical, working systems in these areas are topic-
independent, and most are language-independent. They operate by treating the input as though it
were data, not language.

Text mining is an outgrowth of this “real text” mindset. Accepting that it is probably not much,
what can be done with unrestricted input? Can the ability to process huge amounts of text
compensate for relatively simple techniques? Natural language processing, dominated in its
infancy by unrealistic ambitions and swinging in childhood to the other extreme of unrealistically
artificial worlds and trivial amounts of text, has matured and now embraces both viewpoints:
relatively shallow processing of unrestricted text and relatively deep processing of domain-specific
material.

It is interesting that data mining also evolved out of a history of difficult relations between
disciplines, in this case machine learning—rooted in experimental computer science, with ad hoc
evaluation methodologies —and statistics—well-grounded theoretically, but based on a tradition of
testing explicitly-stated hypotheses rather than seeking new information. Early machine learning
researchers knew or cared little of statistics; early researchers on structured statistical hypotheses
remained ignorant of parallel work in machine learning. The result was that similar techniques (for
example, decision-tree building and nearest-neighbor learners) arose in parallel from the two
disciplines, and only later did a balanced rapprochement emerge.

2 Mining plain text

This section describes the major ways in which text is mined when the input is plain natural
language, rather than partially-structured Web documents. In each case we provide a concrete
example. We begin with problems that involve extracting information for human
consumption—text summarization and document retrieval. We then examine the task of assessing
document similarity, either to categorize documents into predefined classes or to cluster them in
“natural” ways. We also mention techniques that have proven useful in two specific categorization
problems —language identification and authorship ascription—and a third —identifying key-
phrases—that can be tackled by categorization techniques but also by other means. The next
subsection discusses the extraction of structured information, both individual units or “entities”
and structured relations or “templates.” Finally, we review work on extracting rules that
characterize the relationships between entities.



Extracting information for human consumption

We begin with situations in which information mined from text is expressed in a form that is
intended for consumption by people rather than computers. The result is not “actionable” in the
sense discussed above, and therefore lies on the boundary of what is normally meant by “text
mining.”

Text summarization

A text summarizer strives to produce a condensed representation of its input, intended for human
consumption [Mani, 2001]. It may condense individual documents or groups of documents. Text
compression, a related area [Bell et al., 1990], also condenses documents, but summarization
differs in that its output is intended to be human-readable. The output of text compression
algorithms is certainly not human-readable, but neither is it actionable—the only operation it
supports is decompression, that is, automatic reconstruction of the original text. As a field,
summarization differs from many other forms of text mining in that there are people, namely
professional abstractors, who are skilled in the art of producing summaries and carry out the task
as part of their professional life. Studies of these people and the way they work provide valuable
insights for automatic summarization.

Useful distinctions can be made between different kinds of summaries; some are exemplified in
Figure 1 (from [Mani, 2001]). An extract consists entirely of material copied from the input—for
example, one might simply take the opening sentences of a document (Figure 1a) or pick certain
key sentences scattered throughout it (Figure 1b). In contrast, an abstract contains material that is
not present in the input, or at least expresses it in a different way —this is what human abstractors
would normally produce (Figure 1c). An indicative abstract is intended to provide a basis for
selecting documents for closer study of the full text, whereas an informative one covers all the
salient information in the source at some level of detail [Borko and Bernier, 1975]. A further
category is the critical abstract [Lancaster, 1991], which evaluates the subject matter of the source
document, expressing the abstractor’s views on the quality of the author’s work (Figure 1d).
Another distinction is between a generic summary, aimed at a broad readership, and a fopic-
focused one, tailored to the requirements of a particular group of users.

(@ 25% Four score and seven years ago our fathers brought forth upon this
Leading text extract  continent a new nation, conceived in liberty, and dedicated to the
proposition that all men are created equal. Now we are engaged in a
great civil war, testing whether that nation, or any nation so
conceived and so dedicated, can long endure. We are met here on a
great battlefield of that war.

b)) 25% Four score and seven years ago our fathers brought forth upon this
Another extract continent a new nation, conceived in liberty, and dedicated to the
proposition that all men are created equal. Now we are engaged in a
great civil war, testing whether that nation, or any nation so
conceived and so dedicated, can long endure. The brave men, living
and dead, who struggled here, have consecrated it far above our
poor power to add or detract.

() 15% This speech by Abraham Lincoln commemorates soldiers who laid
Abstract down their lives in the Battle of Gettysburg. It reminds the troops
that it is the future of freedom in America that they are fighting for.
d 15% The Gettysburg address, though short, is one of the greatest
Critical abstract American speeches. Its ending words are especially

powerful—"“that government of the people, by the people, for the
people, shall not perish from the earth.”

Figure 1 Applying text summarization to the Gettysburg Address



While they are in a sense the archetypal form of text miners, summarizers do not satisfy the
condition that their output be actionable.

Document retrieval

Given a corpus of documents and a user’s information need expressed as some sort of query,
document retrieval is the task of identifying and returning the most relevant documents.
Traditional libraries provide catalogues (whether physical card catalogues or computerized
information systems) that allow users to identify documents based on surrogates consisting of
metadata—salient features of the document such as author, title, subject classification, subject
headings, keywords. Metadata is a kind of highly structured (and therefore actionable) document
summary, and successful methodologies have been developed for manually extracting metadata
and for identifying relevant documents based on it, methodologies that are widely taught in library
school (e.g. [Mann, 1993]).

Automatic extraction of metadata (e.g. subjects, language, author, key-phrases; see below) is a
prime application of text mining techniques. However, contemporary automatic document retrieval
techniques bypass the metadata creation stage and work on the full text of the documents directly
[Salton and McGill, 1983]. The basic idea is to index every individual word in the document
collection. Effectively, documents are represented as a “bag of words” —that is, the set of words
that they contain, along with a count of how often each one appears in the document. Despite the
fact that this representation discards the sequential information given by the word order, it
underlies many remarkably effective and popular document retrieval techniques. There are some
practical problems: how to define a “word,” what to do with numbers; these are invariably solved
by simple ad hoc heuristics. Many practical systems discard common words or “stop words”,
primarily for efficiency reasons, although suitable compression techniques obviate the need for
this [Witten et al., 1999]. A query is expressed as a set, or perhaps a Boolean combination, of
words and phrases, and the index is consulted for each word in the query to determine which
documents satisfy the query. A well-developed technology of relevance ranking allows the
salience of each term to be assessed relative to the document collection as a whole, and also
relative to each document that contains it. These measures are combined to give an overall ranking
of the relevance of each document to the query, and documents are presented in relevance order.

Web search engines are no doubt the most widely-used of document retrieval systems. However,
search queries are typically restricted to just a few words or phrases—usually one or two. In
contrast, queries made by professionals to advanced document retrieval systems are often far more
complex and specific. For example, Figure 2 shows one of the “topics” or queries used for
evaluation in TREC, a series of conferences in which different document retrieval systems are
compared on queries written by experienced users of information systems [Harman, 1995].

Topic: Financing AMTRAK

Description: A document will address the role of the Federal
Government in financing the operation of the National
Railroad Transportation Corporation (AMTRAK)

Narrative: A relevant document must provide information on the
government’s responsibility to make AMTRAK an
economically viable entity. It could also discuss the
privatization of AMTRAK as an alternative to
continuing government subsidies. Documents
comparing government subsidies given to air and bus
transportation with those provided to AMTRAK would
also be relevant.

Figure 2 Sample TREC query



A set of documents returned in response to a query is a kind of fopic-focused extract from the
corpus. Like a summary, it is not normally actionable.

Information retrieval

Information retrieval might be regarded as an extension to document retrieval where the
documents that are returned are processed to condense or extract the particular information sought
by the user. Thus document retrieval could be followed by a text summarization stage that focuses
on the query posed by the user, or an information extraction stage using techniques described
below. In practice, however, standard textbooks (e.g. [Baeza-Yates and Ribiero-Neto, 1999]) use
the term simply for plain document retrieval. Of course, the granularity of documents may be
adjusted so that each individual subsection or paragraph comprises a unit in its own right, in an
attempt to focus results on individual nuggets of information rather than lengthy documents.

Assessing document similarity

Many text mining problems involve assessing the similarity between different documents; for
example, assigning documents to pre-defined categories and grouping documents into natural
clusters. These are standard problems in data mining too, and have been a popular focus for
research in text mining, perhaps because the success of different techniques can be evaluated and
compared using standard, objective, measures of success.

Text categorization

Text categorization (or text classification) is the assignment of natural language documents to pre-
defined categories according to their content [Sebastiani, 2002]. The set of categories is often
called a “controlled vocabulary.” Document categorization is a long-standing traditional technique
for information retrieval in libraries, where subjects rival authors as the predominant gateway to
library contents—although they are far harder to assign objectively than authorship. The Library of
Congress Subject Headings (LCSH) are a comprehensive and widely used controlled vocabulary
for assigning subject descriptors. They occupy five large printed volumes of 6,000 pages
each—perhaps two million descriptors in all. The aim is to provide a standardized vocabulary for
all categories of knowledge, descending to quite a specific level, so that books—on any subject, in
any language—can be described in a way that helps librarians retrieve all books on a given subject
[Witten and Bainbridge, 2003].

Automatic text categorization has many practical applications, including indexing for document
retrieval, automatically extracting metadata, word sense disambiguation by detecting the topics a
document covers, and organizing and maintaining large catalogues of Web resources. As in other
areas of text mining, until the 1990s text categorization was dominated by ad hoc techniques of
“knowledge engineering” that sought to elicit categorization rules from human experts and code
them into a system that could apply them automatically to new documents. Since then—and
particularly in the research community —the dominant approach has been to use techniques of
machine learning to infer categories automatically from a training set of pre-classified documents.
Indeed, text categorization is a hot topic in machine learning today.

The pre-defined categories are symbolic labels with no additional semantics. When classifying a
document, no information is used except for the document’s content itself. Some tasks constrain
documents to a single category, whereas in others each document may have many categories.
Sometimes category labeling is probabilistic rather than deterministic, or the objective is to rank
the categories by their estimated relevance to a particular document. Sometimes documents are
processed one by one, with a given set of classes; alternatively there may be a single
class—perhaps a new one that has been added to the set—and the task is to determine which
documents it contains.

Many machine learning techniques have been used for text categorization. Early efforts used rules
and decision trees. Figure 3 shows a rule (from [Apte et al., 1994]) for assigning a document to a
particular category. The italicized words are terms that may or may not occur in the document text,



and the rule specifies a certain logical combination of occurrences. This particular rule pertains to
the Reuters collection of pre-classified news articles, which is widely used for document
classification research (e.g. [Hayes et al., 1990]). WHEAT is the name of one of the categories.

If (wheat & farm)

or (wheat & commodity)

or (bushels & export)

or (wheat & tonnes)

or (wheat & winter & — soft)
then WHEAT

Figure 3 Rule for assigning a document to the category WHEAT

Rules like this can be produced automatically using standard techniques of machine learning
[Mitchell, 1997; Witten and Frank, 2000]. The training data comprises a substantial number of
sample documents for each category. Each document is used as a positive instance for the category
labels that are associated with it and a negative instance for all other categories. Typical
approaches extract “features” from each document, and use the feature vectors as input to a
scheme that learns how to classify documents. Using words as features—perhaps a small number
of well-chosen words, or perhaps all words that appear in the document except stop words—and
word occurrence counts as feature values, a model is built for each category. The documents in
that category are positive examples and the remaining documents negative ones. The model
predicts whether or not that category is assigned to a new document based on the words in it, and
their occurrence counts. Given a new document, each model is applied to determine which
categories to assign. Alternatively, the learning method may produce a likelihood of the category
being assigned, and if, say, five categories were sought for the new document, those with the
highest likelihoods could be chosen.

If the features are words, documents are represented using the “bag of words” model described
above under document retrieval. Sometimes word counts are discarded and the “bag” is treated
merely as a set (Figure 3, for example, only uses the presence of words, not their counts). Bag (or
set) of words models neglect word order and contextual effects. Experiments have shown that
more sophisticated representations —for example, ones that detect common phrases and treat them
as single units—do not yield significant improvement in categorization ability (e.g. [Lewis, 1992];
[Apte et al., 1994]; [Dumais et al., 1998]), although it seems likely that better ways of identifying
and selecting salient phrases will eventually pay off. Each word is a “feature”. Because there are
so many of them, problems arise with some machine learning methods, and a selection process is
often used that identifies only a few salient features. A large number of feature selection and
machine learning techniques have been applied to text categorization [Sebastiani, 2002].

Document clustering

Text categorization is a kind of “supervised” learning where the categories are known beforehand
and determined in advance for each training document. In contrast, document clustering is
“unsupervised” learning in which there is no predefined category or “class,” but groups of
documents that belong together are sought. For example, document clustering assists in retrieval
by creating links between similar documents, which in turn allows related documents to be
retrieved once one of the documents has been deemed relevant to a query [Martin, 1995].

Clustering schemes have seen relatively little application in text mining applications. While
attractive in that they do not require training data to be pre-classified, the algorithms themselves
are generally far more computation-intensive than supervised schemes ([Willett, 1988] surveys
classical document clustering methods). Processing time is particularly significant in domains like
text classification, in which instances may be described by hundreds or thousands of attributes.
Trials of unsupervised schemes include [Aone ef al., 1996], who use the conceptual clustering
scheme COBWEB [Fisher, 1987] to induce natural groupings of close-captioned text associated
with video newsfeeds; [Liere and Tadepalli, 1996], who explore the effectiveness of AutoClass
[Cheeseman et al., 1988] in producing a classification model for a portion of the Reuters corpus;



and [Green and Edwards, 1996], who use AutoClass to cluster news items gathered from several
sources into “stories,” which are groupings of documents covering similar topics.

Language identification

Language identification is a particular application of text categorization. A relatively simple
categorization task, it provides an important piece of metadata for documents in international
collections. A simple representation for document categorization is to characterize each document
by a profile that consists of the “n-grams,” or sequences of n consecutive letters, that appear in it.
This works particularly well for language identification. Words can be considered in isolation—the
effect of word sequences can safely be neglected. Documents are preprocessed by splitting them
into word tokens containing letters and apostrophes (the usage of digits and punctuation is not
especially language-dependent), padding each token with spaces, and generating all possible n-
grams of length 1 to 5 for each word in the document. These n-grams are counted and sorted into
frequency order to yield the document profile.

The most frequent 300 or so n-grams are highly correlated with the language. The highest ranking
ones are mostly unigrams consisting of one character only, and simply reflect the distribution of
letters of the alphabet in the document’s language. Starting around rank 300 or so, the frequency
profile begins to be more specific to the document’s topic. Using a simple metric for comparing a
document profile with a category profile, each document’s language can be identified with high
accuracy [Cavnar and Trenkle, 1994].

An alternative approach is to use words instead of n-grams, and compare occurrence probabilities
of the common words in the language samples with the most frequent words of the test data. This
method works as well as the n-gram scheme for sentences longer than about 15 words, but is less
effective for short sentences such as titles of articles and news headlines [Grefenstette, 1995].

Ascribing authorship

Author metadata is one of the primary attributes of most documents. It is usually known and need
not be mined, but in some cases authorship is uncertain and must be guessed from the document
text. Authorship ascription is often treated as a text categorization problem. However, there are
sensitive statistical tests that can be used instead, based on the fact that each author has a
characteristic vocabulary whose size can be estimated statistically from a corpus of their work.

For example, The Complete Works of Shakespeare (885,000 words) contains 31,500 different
words, of which 14,400 appear only once, 4300 twice, and so on. If another large body of work by
Shakespeare were discovered, equal in size to his known writings, one would expect to find many
repetitions of these 31,500 words along with some new words that he had not used before.
According to a simple statistical model, the number of new words should be about 11,400 [Efron
and Thisted, 1976]. Furthermore, one can estimate the total number of words known by
Shakesepeare from the same model: the result is 66,500 words. (For the derivation of these
estimates, see [Efron and Thisted, 1976].) This statistical model was unexpectedly put to the test
ten years after it was developed [Kolata, 1986]. A previously unknown poem, suspected to have
been penned by Shakespeare, was discovered in a library in Oxford, England. Of its 430 words,
statistical analysis predicted that 6.97 would be new, with a standard deviation of +2.64. In fact,
nine of them were (admiration, besots, exiles, inflection, joying, scanty, speck, tormentor and
twined). It was predicted that there would be 4.21+2.05 words that Shakespeare had used only
once; the poem contained seven—only just outside the range. 3.33+1.83 should have been used
exactly twice before; in fact five were. Although this does not prove authorship, it does suggest
it—particularly since comparative analyses of the vocabulary of Shakespeare’s contemporaries
indicate substantial mismatches.

Text categorization methods would almost certainly be far less accurate than these statistical tests,
and this serves as a warning not to apply generic text mining techniques indiscriminately.
However, the tests are useful only when a huge sample of pre-classified text is available—in this
case, the life’s work of a major author.



Identifying key-phrases

In the scientific and technical literature, keywords and key-phrases are attached to documents to
give a brief indication of what they are about. (Henceforth we use the term “key-phrase” to
subsume keywords, that is, one-word key-phrases.) Key-phrases are a useful form of metadata
because they condense documents into a few pithy phrases that can be interpreted individually and
independently of each other.

Given a large set of training documents with key-phrases assigned to each, text categorization
techniques can be applied to assign appropriate key-phrases to new documents. The training
documents provide a predefined set of key-phrases from which all key-phrases for new documents
are chosen—a controlled vocabulary. For each key-phrase the training data defines a set of
documents that are associated with it. For each key-phrase, standard machine learning techniques
are used to create a “classifier” from the training documents, using those associated with it as
positive examples and the remainder as negative examples. Given a new document, it is processed
by each key-phrase’s classifier. Some classify it positively—in other words, it belongs to the set of
documents associated with that key-phrase —while others classify it negatively —it does not. Key-
phrases are assigned to the new document accordingly. The process is called key-phrase
assignment because phrases from an existing set are assigned to documents.

There is an entirely different method for inferring key-phrase metadata called key-phrase
extraction. Here, all the phrases that occur in the document are listed and information retrieval
heuristics are used to select those that seem to characterize it best. Most key-phrases are noun
phrases, and syntactic techniques may be used to identify these and ensure that the set of
candidates contains only noun phrases. The heuristics used for selection range from simple ones
such as the position of the phrase’s first occurrence in the document to more complex ones such as
the occurrence frequency of the phrase in the document versus its occurrence frequency in a
corpus of other documents in the subject area. The training set is used to tune the parameters that
balance these different factors.

With key-phrase assignment, the only key-phrases that can be assigned are ones that are have
already been used for training documents. This has the advantage that all key-phrases are well-
formed, but the disadvantage that novel topics cannot be accommodated. The training set of
documents must therefore be large and comprehensive. In contrast, key-phrase extraction is open-
ended: phrases are selected from the document text itself. There is no particular problem with
novel topics, but idiosyncratic or mal-formed key-phrases may be chosen. A large training set is
not needed because it is only used to set parameters for the algorithm.

Key-phrase extraction works as follows. Given a document, rudimentary lexical techniques based
on punctuation and common words are used to extract a set of candidate phrases. Then, features
are computed for each phrase, like how often it appears in the document (normalized by how often
that phrase appears in other documents in the corpus), how often it has been used as a key-phrase
in other training documents, whether it occurs in the title, abstract, or section headings, whether it
occurs in the title of papers cited in the reference list, and so on. The training data is used to form a
model that takes these features and predicts whether or not a candidate phrase will actually appear
as a key-phrase —this information is known for the training documents. Then the model is applied
to extract likely key-phrases from new documents. Such models have been built and used to assign
key-phrases to technical papers; simple machine learning schemes (e.g. Naive Bayes) seem
adequate for this task.

To give an indication of the success of machine learning on this problem, Figure 4 shows the titles
of three research articles and two sets of key-phrases for each one [Frank er al., 1999]. One set
contains the key-phrases assigned by the article’s author; the other was determined automatically
from its full text. Phrases in common between the two sets are italicized. In each case the author’s
key-phrases and the automatically extracted key-phrases overlap, but it is not too difficult to guess
which are the author’s. The giveaway is that the machine learning scheme, in addition to choosing
several good key-phrases, also chooses some that authors are unlikely to use—for example, gauge,
smooth, and especially garbage! Despite the anomalies, the automatically extracted lists give a
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reasonable characterization of the papers. If no author-specified key-phrases were available, they
could prove useful for someone scanning quickly for relevant information.

Protocols for secure, atomic transaction Neural multigrid for gauge theories and other
execution in electronic commerce disordered systems
anonymity atomicity disordered systems disordered
atomicity auction gauge fields gauge
auction customer multigrid gauge fields
electronic commerce electronic commerce neural multigrid interpolation kernels
privacy intruder neural networks length scale
real-time merchant multigrid
security protocol smooth
transaction security

third party

transaction

Proof nets, garbage, and computations

cut-elimination cut

linear logic cut elimination
proof nets garbage
sharing graphs proof net

typed lambda-calculus ~ weakening

Figure 4 Titles and key-phrases—author- and machine-assigned—for three papers

Extracting structured information

An important form of text mining takes the form of a search for structured data inside documents.
Ordinary documents are full of structured information: phone numbers, fax numbers, street
addresses, email addresses, email signatures, abstracts, tables of contents, lists of references,
tables, figures, captions, meeting announcements, Web addresses, and more. In addition, there are
countless domain-specific structures, such as ISBN numbers, stock symbols, chemical structures,
and mathematical equations. Many short documents describe a particular kind of object or event,
and in this case elementary structures are combined into a higher-level composite that represent
the document’s entire content. In constrained situations, the composite structure can be represented
as a “template” with slots that are filled by individual pieces of structured information. From a
large set of documents describing similar objects or events it may even be possible to infer rules
that represent particular patterns of slot-fillers.

Applications for schemes that identify structured information in text are legion. Indeed, in general
interactive computing, users commonly complain that they cannot easily take action on the
structured information found in everyday documents [Nardi et al., 1998].

Entity extraction

Many practical tasks involve identifying linguistic constructions that stand for objects or “entities”
in the world. Often consisting of more than one word, these terms act as single vocabulary items,
and many document processing tasks can be significantly improved if they are identified as such.
They can aid searching, interlinking and cross-referencing between documents, the construction of
browsing indexes, and can comprise machine-processable “metadata” which, for certain
operations, act as a surrogate for the document contents.

Examples of such entities are

Names of people, places, organizations, products
E-mail addresses, URLs

Dates, numbers, sums of money

Abbreviations

Acronyms and their definition



11

Multiword terms.

Some of these items can be spotted by a dictionary-based approach, using lists of personal names
and organizations, information about locations from gazetteers, abbreviation and acronym
dictionaries, and so on. Here the lookup operation should recognize legitimate variants. This is
harder than it sounds—for example (admittedly an extreme one), the name of the Libyan leader
Muammar Qaddafi is represented in 47 different ways on documents that have been received by
the Library of Congress [Mann, 1993]! A central area of library science is devoted to the creation
and use of standard names for authors and other bibliographic entities (called “authority control”).

In most applications, novel names appear. Sometimes these are composed of parts that have been
encountered before, say John and Smith, but not in that particular combination. Others are
recognizable by their capitalization and punctuation pattern (e.g. Randall B. Caldwell). Still
others —particularly certain foreign names—will be recognizable because of peculiar language
statistics (e.g. Kung-Kui Lau). Others will not be recognizable except by capitalization, which is an
unreliable guide—particularly when only one name is present. Names that begin a sentence cannot
be distinguished on this basis from other words. It is not always completely clear what to “begin a
sentence” means: in some typographic conventions, itemized points have initial capitals but no
terminating punctuation. Of course, words that are not names are sometimes capitalized (e.g.
important words in titles—and, in German, all nouns). And a small minority of names are
conventionally written unpunctuated and in lower case (e.g. some English names starting with ff,
the poet e e cummins the singer k d lang). Full personal name recognition conventions are
surprisingly complex, involving baronial prefixes in different languages (e.g. von, van, de),
suffixes (Snr, Jnr), and titles (Mr, Ms, Rep., Prof., General).

It is generally impossible to distinguish personal names from other kinds of names in the absence
of context or domain knowledge. Consider places like Berkeley, Lincoln, Washington; companies
like du Pont, Ford, even General Motors, product names like Mr Whippy and Dr Pepper; book
titles like David Copperfield or Moby Dick. Names of organizations present special difficulties
because they can contain linguistic constructs, as in The Food and Drug Administration (contrast
Lincoln and Washington, which conjoins two separate names) or the League of Nations (contrast
General Motors of Detroit, which qualifies one name with a different one).

Some artificial entities like e-mail addresses and URLs are easy to recognize because they are
specially designed for machine processing. They can be unambiguously detected by a simple
grammar, usually encoded in a regular expression, for the appropriate pattern. Of course, this is
exceptional: these items are not part of “natural” language.

Other entities can be recognized by explicit grammars—indeed, one might define structured
information as “data recognizable by a grammar.” Dates, numbers, and sums of money are good
examples that can be captured by simple lexical grammars. However, in practice things are often
not so easy as they might appear. There may be a proliferation of different patterns, and novel ones
may occur. The first step in processing is usually to divide the input into lexical tokens or “words”
(e.g. split at white space or punctuation). While words delimited by non-alphanumeric characters
provide a natural tokenization for many examples, such a decision will turn out to be restrictive in
particular cases, for it precludes patterns that adopt a non-standard tokenization—such as 30Jul98.
In general, any prior division into tokens runs the risk of obscuring information.

To illustrate the degree of variation in these items, Figure 5 shows examples of items that are
recognized by IBM’s “Intelligent Miner for Text” software [Tkach, 1998]. Dates include standard
textual forms for absolute and relative dates. Numbers include both absolute numbers and
percentages, and can be written in numerals or spelled out as words. Sums of money can be
expressed in various currencies.
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Dates Numbers Sums of money

“March twenty-seventh,  “one thousand three “twenty-seven dollars”
nineteen ninety-seven” hundred and twenty-seven” “DM 27"

“March 27, 1997” “thirteen twenty-seven” “27,000 dollars USA™
“next March 27th” “1327” “27,000 marks Germany”
“tomorrow” “twenty-seven percent”

“a year ago” 27%

Figure 5 Sample information items

Most abbreviations can only be identified using dictionaries. Many acronyms, however, can be
detected automatically —and technical, commercial and political documents make extensive use of
them. Identifying acronyms, and their definitions, in documents is a good example of a text mining
problem that can usefully be tackled using simple heuristics.

The dictionary definition of “acronym” is

A word formed from the first (or first few) letters of a series of words, as radar, from
radio detecting and ranging.

Acronyms are often defined by following (or preceding) their first use with a textual
explanation—as in this example. Heuristics can be developed to detect situations where a word is
spelled out by the initial letters of an accompanying phrase. Three simplifying assumptions that
vastly reduce the computational complexity of the task while sacrificing the ability to detect just a
few acronyms are to consider (a) only acronyms made up of three or more letters; (b) only the first
letter of each word for inclusion in the acronym, and (c) acronyms that are written either fully- or
mostly-capitalized. In fact, the acronym radar breaks both (b) and (c); it involves the first two
letters of the word radio, and, like most acronyms that have fallen into general use, it is rarely
capitalized. However, the vast majority of acronyms that pervade today’s technical, business, and
political literature satisfy these assumptions, and are relatively easy to detect. Once detected,
acronyms can be added to a dictionary so that they are recognized elsewhere as abbreviations. Of
course, many acronyms are ambiguous: the Acronym Finder Web site (at www.mtnds.com/af/) has
27 definitions for CIA, ranging from Central Intelligence Agency and Canadian Institute of
Actuaries to Chemiluminescence Immunoassay. In ordinary text this ambiguity rarely poses a
problem, but in large document collections context and domain knowledge will be necessary for
disambiguation.

Information extraction

“Information extraction” is used to refer to the task of filling templates from natural language input
[Appelt, 1999], one of the principal subfields of text mining. A commonly-cited domain is that of
terrorist events, where the template may include slots for the perpetrator, the victim, type of event,
where and when it occurred, etc. In the late 1980s, DARPA instituted a series of “Message
understanding conferences” (MUC) to focus efforts on information extraction on particular
domains and to compare emerging technologies on a level basis. MUC-1 (1987) and MUC-2
(1989) focused on messages about naval operations; MUC-3 (1991) and MUC-4 (1992) studied
news articles about terrorist activity; MUC-5 (1993) and MUC-6 (1995) looked at news articles
about joint ventures and management changes respectively; and MUC-7 (1997) examined news
articles about space vehicle and missile launches. Figure 6 shows an example of a MUC-7 query.
The outcome of information extraction would be to identify relevant news articles and, for each
one, fill out a template like that shown.
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Query “A relevant article refers to a vehicle launch that is scheduled,
in progress or has actually occurred and must minimally
identify the payload, the date of the launch, whether the launch
is civilian or military, the function of the mission and its
status.”

Vehicle:

Payload:

Mission Date:

Mission Site:

Mission Type (military, civilian):

Mission Function (test, deploy, retrieve):

Mission status (succeeded, failed, in progress,
scheduled):

Template

Figure 6 Sample query and template from MUC-7

Unlike text summarization and document retrieval, information extraction in this sense is not a
task commonly undertaken by people because the extracted information must come from each
individual article taken in isolation—the use of background knowledge and domain-specific
inference are specifically forbidden. It turns out to be a difficult task for people, and inter-
annotator agreement is said to lie in the 60%—80% range [Appelt, 1999].

The first job of an information extraction system is entity extraction, discussed earlier. Once this
has been done, it is necessary to determine the relationship between the entities extracted, which
involves syntactic parsing of the text. Typical extraction problems address simple relationships
among entities, such as finding the predicate structure of a small set of pre-determined
propositions. These are usually simple enough to be captured by shallow parsing techniques such
as small finite-state grammars—a far easier proposition than a full linguistic parse. It may be
necessary to determine the attachment of prepositional phrases and other modifiers, which may be
restricted by type constraints that apply in the domain under consideration. Another problem,
which is not so easy to resolve, is pronoun reference ambiguity. This arises in more general form
as “co-reference ambiguity”: whether one noun phrase refers to the same real-world entity as
another. Again, [Appelt, 1999] describes these and other problems of information extraction.

Machine learning has been applied to the information extraction task by seeking pattern-match
rules that extract fillers for slots in the template (e.g. [Soderland, ef al, 1995]; [Huffman, 1996];
[Freitag, 2000]). As an example, we describe a scheme investigated by [Califf and Mooney, 1999],
in which pairs comprising a document and a template manually extracted from it are presented to
the system as training data. A bottom-up learning algorithm is employed to acquire rules that
detect the slot fillers from their surrounding text. The rules are expressed in pattern-action form,
and the patterns comprise constraints on words in the surrounding context and the slot-filler itself.
These constraints involve the words included, their part-of speech tags, and their semantic classes.

Califf and Mooney investigated the problem of extracting information from job ads such as those
posted on Internet newsgroups. Figure 7 shows a sample message and filled template of the kind
that might be supplied to the program as training data.



14

Newseroup postin Telecommunications. SOLARIS Systems
group p g Administrator. 38-44K. Immediate need

Leading telecommunications firm in need
of an energetic individual to fill the
following position in our offices in
Kansas City, Missouri:

SOLARIS SYSTEMS ADMINISTRATOR
Salary: 38-44K with full benefits
Location: Kansas City, Missouri

Filled template Cqmputer_science_job )
p Title: SOLARIS Systems Administrator

Salary: 38-44K

State: Missouri

City: Kansas City
Platform: SOLARIS

Area: telecommunication

Figure 7 Sample message and filled template

This input provides support for several rules. One example is “a noun phrase of 1 or 2 words,
preceded by the word in and followed by a comma and a noun phrase with semantic tag State,
should be placed in the template’s City slot.” The strategy for determining rules is to form
maximally specific rules based on each example and then generalize the rules produced for
different examples. For instance, from the phrase offices in Kansas City, Missouri in the
newsgroup posting in Figure 7 a maximally specific rule can be derived that assigns the phrase
Kansas City to the City slot in a context where it is preceded by offices in and followed by
“, Missouri”, with the appropriate parts of speech and semantic tags. A second newsgroup posting
that included the phrase located in Atlanta, Georgia, with Atlanta occupying the filled template’s
City slot, would produce a similar maximally specific rule. The rule generalization process takes
these two specific rules, notes the commonalities, and determines the general rule for filling the
City slot cited above.

Learning rules from text

Taking information extraction a step further, the extracted information can be used in a subsequent
step to learn rules—not rules about how to extract information, but rules that characterize the
content of the text itself. Following on from the project described above to extract templates from
job postings in internet newsgroups, a database was formed from several hundred postings, and
rules were induced from the database for the fillers of the slots for Language, Platform,
Application, and Area slots [ Nahm and Mooney, 2000]. Figure 8 shows some of the rules that were
found.

If Language contains both HTML and DHTML, then Language also
contains XML

If Application contains Dreamweaver 4 and Areais Web design then
Application also contains Photoshop 6

If Application is ODBC then Language is JSP

If Language contains both Perl and HTML then Platform is Linux

Figure 8 Sample rules induced from job postings database.

In order to create the database, templates were constructed manually from a few newsgroup
postings. From these, information extraction rules were learned as described above. These rules
were then used to extract information automatically from the other newsgroup postings. Finally,
the whole database so extracted was input to standard data mining algorithms to infer rules for
filling the four chosen slots. Both prediction rules—that is, rules predicting the filler for a
predetermined slot—and association rules—that is, rules predicting the value of any slot—were
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sought. Standard techniques were employed: C4.5Rules [Quinlan, 1993] and Ripper [Cohen, 1995]
for prediction rules and Apriori [Agrawal and Srikant, 1994] for association rules.

Nahm and Mooney [Nahm and Mooney, 2000] concluded that information extraction based on a
few manually-constructed training examples could compete with an entire manually-constructed
database in terms of the quality of the rules that were inferred. However, this success probably
hinged on the highly structured domain of job postings in a tightly constrained area of
employment. Subsequent work on inferring rules from book descriptions on the Amazon Web site
[Nahm and Mooney, 2002] produced rules that, though interesting, seem rather less useful in
practice.

3 Mining structured text

Much of the text that we deal with today —especially on the Internet—contains explicit structural
markup and thus differs from traditional plain text. Some markup is internal and indicates
document structure or format; some is external and gives explicit hypertext links between
documents. These information sources give additional leverage for mining Web documents. Both
sources of information are generally extremely noisy: they involve arbitrary and unpredictable
choices by individual page designers. However, these disadvantages are offset by the
overwhelming amount of data that is available, which is relatively unbiased because it is
aggregated over many different information providers. Thus “Web mining” is emerging as a new
subfield, similar to text mining but taking advantage of the extra information available in Web
documents, particularly hyperlinks—and even capitalizing on the existence of topic directories in
the Web itself to improve results [Chakrabarti, 2003].

We briefly review three techniques for mining structured text. The first, wrapper induction, uses
internal markup information to increase the effectiveness of text mining in marked-up documents.
The remaining two, document clustering and determining the “authority” of Web documents,
capitalize on the external markup information that is present in hypertext in the form of explicit
links to other documents.

Wrapper induction

Internet resources that contain relational data—telephone directories, product catalogs, etc.—use
formatting markup to clearly present the information they contain to users. However, with standard
HTML, it is quite difficult to extract data from such resources in an automatic way. The XML
markup language is designed to overcome these problems by encouraging page authors to mark
their content in a way that reflects document structure at a detailed level; but it is not clear to what
extent users will be prepared to share the structure of their documents fully in XML, and even if
they do, huge numbers of legacy pages abound.

Many software systems use external online resources by hand-coding simple parsing modules,
commonly called “wrappers,” to analyze the page structure and extract the requisite information.
This is a kind of text mining, but one that depends on the input having a fixed, predetermined
structure from which information can be extracted algorithmically. Given that this assumption is
satisfied, the information extraction problem is relatively trivial. But this is rarely the case. Page
structures vary; errors that are insignificant to human readers throw automatic extraction
procedures off completely; Web sites evolve. There is a strong case for automatic induction of
wrappers to reduce these problems when small changes occur, and to make it easier to produce
new sets of extraction rules when structures change completely.

Figure 8 shows an example taken from [Kushmerick ef al., 1997] in which a small Web page is
used to present some relational information. Below is the HTML code from which the page was
generated; below that is a wrapper, written in an informal pseudo-code, that extracts relevant
information from the HTML. Many different wrappers could be written; in this case the algorithm
is based on the formatting information present in the HTML —the fact that countries are
surrounded by <B> ... </B> and country codes by <I> ... </I>. Used in isolation, this information
fails because other parts of the page are rendered in boldface too. Consequently the wrapper in
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Figure 8c uses additional information—the <P> that precedes the relational information in Figure
8b and the <HR> that follows it—to constrain the search. This wrapper is a specific example of a
generalized structure that parses a page into a head, followed by a sequence of relational items,
followed by a tail; where specific delimiters are used to signal the end of the head, the items
themselves, and the beginning of the tail.

(a) paragraph ® Times vyio"¢" B [ 1 é

Some Country Codes

Congo 242
Egypt 20
Belize 501
Spain 34

End

(b) <HTML><TITLE>Some Country Codes</TITLE>
<BODY><B>Some Country Codes</B><P>
<B>Congo</B> <I>242</I><BR>
<B>Egypt</B> <I>20</I><BR>
<B>Belize</B> <I>501</I><BR>
<B>Spain</B> <I>34</I><BR>
<HR><B>End</B></BODY></HTML>

(c)  ExtractCountryCodes(page P)
Skip past first occurrence of <P>in P
While next <B> is before next <HR> in P
For each [s, 1] € {[<B>,</B>], [<]>,</I>]}
Skip past next occurrence of s in P
Extract attribute from P to next occurrence of ¢
Return extracted tuples

Figure 8 Web page, underlying HTML, and wrapper extracting relational information

It is possible to infer such wrappers by induction from examples that comprise a set of pages and
tuples representing the information derived from each page. This can be done by iterating over all
choices of delimiters, stopping when a consistent wrapper is encountered. One advantage of
automatic wrapper induction is that recognition then depends on a minimal set of cues, providing
some defense against extraneous text and markers in the input. Another is that when errors are
caused by stylistic variants it is a simple matter to add these to the training data and re-induce a
new wrapper that takes them into account.

Document clustering with links

Document clustering techniques are normally based on the documents’ textual similarity.
However, the hyperlink structure of Web documents, encapsulated in the “link graph” in which
nodes are Web pages and links are hyperlinks between them, can be used as a different basis for
clustering. Many standard graph clustering and partitioning techniques are applicable (e.g.
[Hendrickson and Leland, 1995]). Link-based clustering schemes typically use factors such as
these:

* The number of hyperlinks that must be followed to travel in the Web from one document to
the other;

* The number of common ancestors of the two documents, weighted by their ancestry
distance;
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* The number of common descendents of the documents, similarly weighted.

These can be combined into an overall similarity measure between documents. In practice, a
textual similarity measure is usually incorporated as well, to yield a hybrid clustering scheme that
takes account of both the documents’ content and their linkage structure. The overall similarity
may then be determined as the weighted sum of four factors (e.g. [Weiss et al., 1996]). Clearly
such a measure will be sensitive to the stylistic characteristics of the documents and their linkage
structure, and given the number of parameters involved there is considerable scope for tuning to
maximize performance on particular data sets.

Determining “authority” of Web documents

The Web’s linkage structure is a valuable source of information that reflects the popularity,
sometimes interpreted as “importance,” “authority” or “status,” of Web pages. For each page, a
numeric rank is computed. The basic premise is that highly-ranked pages are ones that are cited, or
pointed to, by many other pages. Consideration is also given to (a) the rank of the citing page, to
reflect the fact that a citation by a highly-ranked page is a better indication of quality than one
from a lesser page, and (b) the number of out-links from the citing page, to prevent a highly-
ranked page from artificially magnifying its influence simply by containing a large number of
pointers. This leads to a simple algebraic equation to determine the rank of each member of a set
of hyperlinked pages [Brin and Page, 1998]. Complications arise from the fact that some links are
“broken” in that they lead to nonexistent pages, and from the fact that the Web is not fully
connected; these are easily overcome.

Such techniques are widely used by search engines (e.g. Google) to determine how to sort the hits
associated with any given query. They provide a social measure of status that relates to standard
techniques developed by social scientists for measuring and analyzing social networks
[Wasserman and Faust, 1994].

4 Human text mining

All scientific researchers are expected to use the literature as a major source of information during
the course of their work to provide new ideas and supplement their laboratory studies. However,
some feel that this can be taken further: that new information, or at least new hypotheses, can be
derived directly from the literature by researchers who are expert in information-seeking but not
necessarily in the subject matter itself. Subject-matter experts can only read a small part of what is
published in their fields and are often unaware of developments in related fields. Information
researchers can seek useful linkages between related literatures which may be previously
unknown — particularly if there is little explicit cross-reference between the literatures.

We briefly sketch an example, to indicate what automatic text mining may eventually aspire
to—but is nowhere near achieving yet. By analyzing chains of causal implication within the
medical literature, new hypotheses for causes of rare diseases have been discovered —some of
which have received supporting experimental evidence [Swanson 1987; Swanson and Smalheiser,
1997]. While investigating causes of migraine headaches, Swanson extracted information from
titles of articles in the biomedical literature, leading to clues like these:

Stress is associated with migraines

Stress can lead to loss of magnesium

Calcium channel blockers prevent some migraines

Magnesium is a natural calcium channel blocker

Spreading cortical depression is implicated in some migraines
High levels of magnesium inhibit spreading cortical depression
Migraine patients have high platelet aggregability

Magnesium can suppress platelet aggregability

These clues suggest that magnesium deficiency may play a role in some kinds of migraine
headache, a hypothesis that did not exist in the literature at the time Swanson found these links.
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Thus a new and plausible medical hypothesis was derived from a combination of text fragments
and the information researcher’s background knowledge. Of course, the hypothesis still had to be
tested via non-textual means.

5 Techniques and tools

Text mining systems use a broad spectrum of different approaches and techniques, partly because
of the great scope of text mining and consequent diversity of systems that perform it, and partly
because the field is so young that dominant methodologies have not yet emerged.

High-level issues: Training vs. knowledge engineering

There is an important distinction between systems that use an automatic training approach to spot
patterns in data and ones that are based on a knowledge engineering approach and use rules
formulated by human experts. This distinction recurs throughout the field but is particularly stark
in the areas of entity extraction and information extraction. For example, systems that extract
personal names can use hand-crafted rules derived from everyday experience. Simple and obvious
rules involve capitalization, punctuation, single-letter initials, and titles; more complex ones take
account of baronial prefixes and foreign forms. Alternatively, names could be manually marked up
in a set of training documents and machine learning techniques used to infer rules that apply to test
documents.

In general, the knowledge engineering approach requires a relatively high level of human
expertise—a human expert who knows the domain, and the information extraction system, well
enough to formulate high-quality rules. Formulating good rules is a demanding and time-
consuming task for human experts, and involves many cycles of formulating, testing, and adjusting
the rules so that they perform well on new data.

Markup for automatic training is clerical work that requires only the ability to recognize the
entities in question when they occur. However, it is a demanding task because large volumes are
needed for good performance. Some learning systems can leverage unmarked training data to
improve the results obtained from a relatively small training set. For example, an experiment in
document categorization used a small number of labeled documents to produce an initial model,
which was then used to assign probabilistically-weighted class labels to unlabeled documents
[Nigam et al., 1998]. Then a new classifier was produced using all the documents as training data.
The procedure was iterated until the classifier remained unchanged. Another possibility is to
bootstrap learning based on two different and mutually reinforcing perspectives on the data, an
idea called “co-training” [Blum and Mitchell, 1998].

Low-level issues: Token identification

Dealing with natural language involves some rather mundane decisions that nevertheless strongly
affect the success of the outcome. Tokenization, or splitting the input into words, is an important
first step that seems easy but is fraught with small decisions: how to deal with apostrophes and
hyphens, capitalization, punctuation, numbers, alphanumeric strings, whether the amount of white
space is significant, whether to impose a maximum length on tokens, what to do with non-printing
characters, and so on. It may be beneficial to perform some rudimentary morphological analysis on
the tokens—removing suffixes [Porter, 1980] or representing them as words separate from the
stem—which can be quite complex and is strongly language-dependent. Tokens may be
standardized by using a dictionary to map different, but equivalent, variants of a term into a single
canonical form. Some text mining applications (e.g. text summarization) split the input into
sentences and even paragraphs, which again involves mundane decisions about delimiters,
capitalization, and non-standard characters.

Once the input is tokenized, some level of syntactic processing is usually required. The simplest
operation is to remove stop words, which are words that perform well-defined syntactic roles but
from a non-linguistic point of view do not carry information. Another is to identify common
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phrases and map them into single features. The resulting representation of the text as a sequence of
word features is commonly used in many text mining systems (e.g. for information extraction).

Basic techniques

Tokenizing a document and discarding all sequential information yields the “bag of words”
representation mentioned above under document retrieval. Great effort has been invested over the
years in a quest for document similarity measures based on this representation. One is to count the
number of terms in common between the documents: this is called coordinate matching. This
representation, in conjunction with standard classification systems from machine learning (e.g.
Naive Bayes and Support Vector Machines; see [Witten and Frank, 2000]), underlies most text
categorization systems.

It is often more effective to weight words in two ways: first by the number of documents in the
entire collection in which they appear (“document frequency”) on the basis that frequent words
carry less information than rare ones; second by the number of times they appear in the particular
documents in question (“term frequency”). These effects can be combined by multiplying the term
frequency by the inverse document frequency, leading to a standard family of document similarity
measures (often called “tfxidf”). These form the basis of standard text categorization and
information retrieval systems.

A further step is to perform a syntactic analysis and tag each word with its part of speech. This
helps to disambiguate different senses of a word and to eliminate incorrect analyses caused by rare
word senses. Some part-of-speech taggers are rule based, while others are statistically based
[Garside et al., 1987]—this reflects the “training” vs. “knowledge engineering” referred to above.
In either case, results are correct about 95% of the time —which may not be enough to resolve the
ambiguity problems.

Another basic technique for dealing with sequences of words or other items is to use Hidden
Markov Models (HMMs). These are probabilistic finite-state models that “parse” an input
sequence by tracking its flow through the model. This is done in a probabilistic sense, so that the
model’s current state is represented not by a particular unique state but by a probability
distribution over all states. Frequently the initial state is unknown or “hidden,” and must itself be
represented by a probability distribution. Each new token in the input affects this distribution in a
way that depends on the structure and parameters of the model. Eventually, the overwhelming
majority of the probability may be concentrated on one particular state, which serves to
disambiguate the initial state and indeed the entire trajectory of state transitions corresponding to
the input sequence. Trainable part-of-speech taggers are based on this idea: the states correspond
to parts of speech (e.g. [Brill, 1992]).

HMMs can easily be built from training sequences in which each token is pre-tagged with its state.
However, the manual effort involved in tagging training sequences is often prohibitive. There
exists a “relaxation” algorithm that takes untagged training sequences and produces a
corresponding HMM [Rabiner, 1989]. Such techniques have been used in text mining, for
example, to extract references from plain text [McCallum et al., 1999].

If the source documents are hypertext, there are various basic techniques for analyzing the linkage
structure. One, evaluating page rank to determine a numeric “importance” for each page, was
described above. Another is to decompose pages into “hubs” and “authorities” [Kleinberg, 1999].
These are recursively defined as follows: a good hub is a page that points to many good
authorities, while a good authority is a page pointed to by many good hubs. This mutually
reinforcing relationship can be evaluated using an iterative relaxation procedure. The result can be
used to select documents that contain authoritative content to use as a basis for text mining,
discarding all those Web pages that simply contain lists of pointers to other pages.

Tools

There is a plethora of software tools to help with the basic processes of text mining. A
comprehensive and useful resource at nlp.stanford.edu/lionks/statnlp.html lists taggers, parsers,



20

language models and concordances; several different corpora (large collections, particular
languages, etc.); dictionaries, lexical, and morphological resources; software modules for handling
XML and SGML documents; and other relevant resources such as courses, mailing lists, people,
and societies. It classifies software as freely downloadable and commercially available, with
several intermediate categories.

One particular framework and development environment for text mining, called General
Architecture for Text Engineering or GATE [Cunningham, 2002], aims to help users develop,
evaluate and deploy systems for what the authors term “language engineering.” It provides support
not just for standard text mining applications such as information extraction, but also for tasks
such as building and annotating corpora, and evaluating the applications.

At the lowest level, GATE supports a variety of formats including XML, RTF, HTML, SGML,
email and plain text, converting them into a single unified model that also supports annotation.
There are three storage mechanisms: a relational database, a serialized Java object, and an XML-
based internal format; documents can be re-exported into their original format with or without
annotations. Text encoding is based on Unicode to provide support for multilingual data
processing, so that systems developed with GATE can be ported to new languages with no
additional overhead apart from the development of the resources needed for the specific language.

GATE includes a tokenizer and a sentence splitter. It incorporates a part-of-speech tagger and a
gazetteer that includes lists of cities, organizations, days of the week, etc. It has a semantic tagger
that applies hand-crafted rules written in a language in which patterns can be described and
annotations created as a result. Patterns can be specified by giving a particular text string, or
annotations that have previously been created by modules such as the tokenizer, gazetteer, or
document format analysis. It also includes semantic modules that recognize relations between
entities and detect co-reference. It contains tools for creating new language resources, and for
evaluating the performance of text mining systems developed with GATE.

One application of GATE is a system for entity extraction of names that is capable of processing
texts from widely different domains and genres. This has been used to perform recognition and
tracking tasks of named, nominal and pronominal entities in several types of text. GATE has also
been used to produce formal annotations about important events in a text commentary that
accompanies football video program material.

6 Conclusion

Text mining is a burgeoning technology that is still, because of its newness and intrinsic difficulty,
in a fluid state—akin, perhaps, to the state of machine learning in the mid-1980s. Generally
accepted characterizations of what it covers do not yet exist. When the term is broadly interpreted,
many different problems and techniques come under its ambit. In most cases it is difficult to
provide general and meaningful evaluations because the task is highly sensitive to the particular
text under consideration. Document classification, entity extraction, and filling templates that
correspond to given relationships between entities, are all central text mining operations that have
been extensively studied. Using structured data such as Web pages rather than plain text as the
input opens up new possibilities for extracting information from individual pages and large
networks of pages. Automatic text mining techniques have a long way to go before they rival the
ability of people, even without any special domain knowledge, to glean information from large
document collections.
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