Analisi Matematica II per il corso di Laurea Triennale in Matematica Dipartimento di Matematica e Applicazioni, Università di Milano – Bicocca

FOGLIO DI ESERCIZI 5: integrali multipli.

Non si accetteranno	e in aula durante la lezione di mercoledí 8 Gennaio 2020. o fogli consegnati in altro momento e in altra modalità. I fogli vanno pinzati nnaio 2020 saranno riconsegnati i fogli corretti e verrá discussa la correzione in
	sono piú difficili degli altri!
NOME E COGNO	
1. Sia	$D = \left\{ (x, y) \in \mathbb{R}^2 : \frac{1}{x^2} \le y \le \frac{2}{x^2} ; x \le y \le 2x \right\}$
Calcolare	$\int_{D} \frac{y}{1 + yx^2} dx dy$

- 2. Per ogni $r \ge 0$ sia $A_r = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le r^2, x^2 + y^2 + z^2 \le 2zr\}.$
 - a. Si calcoli il volume di A_r ;

b. si calcoli $\int_{A_r} z^2 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z;$

c. si determini $\alpha \in \mathbb{R}$ tali che esiste finito $\int_{A_2} (y^2 + (z-1)^2 + x^2)^{\alpha} dx dy dz$.

3. Sia
$$R > 2\sqrt{2}$$
 e sia

$$D_R = \{(x, y) \in \mathbb{R}^2 : \sqrt[3]{|x|} + \sqrt[3]{|y|} \le R\}.$$

 ${\bf Calcolare}$

a.
$$\lim_{R \to \infty} \int_{D_R} e^{-|x| - |y|} \, \mathrm{d}x \, \mathrm{d}y :$$

b.*
$$\lim_{R \to \infty} \int_{D_R} e^{-|x+y|} dx dy;$$

c.
$$\lim_{R \to \infty} \int_{D_R} x e^{-|x+y|} \, \mathrm{d}x \, \mathrm{d}y.$$

4. Sia

$$f(x, y, z) = \frac{y}{(z^2 + x^2 + y^2)\sqrt{x^2 + y^2}}$$

Si stabilisca

a.* se f é integrabile in

$$D = \{(x, y, z) \in \mathbb{R}^3 : \ x^2 < z^2 < x^2 + y^2, \ x > 0, \ y > 0, \ 0 < z < x^2 + y^2 < 1\}.$$

In caso affermativo si calcoli $\int_D f \, dx \, dy \, dz$;

b. i valori di $\alpha>0$ per cui la funzione g(x,y,z)=zf(x,y,z) é integrabile in

$$E_{\alpha} = \{(x, y, z) \in \mathbb{R}^3 : 0 < z < (x^2 + y^2)^{\alpha} \le 10, x > 0\}.$$

Per tali valori di α si calcoli $\int_{E_\alpha} g \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z.$

5. Sia

$$D = \{(x,y) \in \mathbb{R}^2: \ x^2 + y^2 \le 1, \ (|x| - 1)^2 + y^2 \ge 1\}.$$

a. Si calcoli l'area di D;

b.* si determinino gli $\alpha>0$ tale che esiste finito

$$\int_D \frac{e^x}{|y|^\alpha \sin y} \, \mathrm{d}x \, \mathrm{d}y$$

e lo si calcoli;

c. si calcoli il volume del solido ottenuto dalla rotazione di D intorno all'asse x;

6. Sia E l'ellissoide in \mathbb{R}^3 dato da

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$$

con a, $b \in c$ positivi.

a. Si calcoli il volume di E;

b. sia E' l'ellissoide che si ottiene traslando E del vettore (a,0,0); si calcoli il volume di $F=E\setminus E';$

c. si calcoli

$$\lim_{b \to \infty} \int_F z \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z.$$