Analisi Matematica II corso di Laurea in Matematica prove scritte, a.a. 2016/2017

Prima prova parziale, seconda parte, 2 dicembre 2016

Versione A

Siano $\Omega = \{(x,y) \in \mathbb{R}^2 : xy > -1\}$ e $f: \Omega \to \mathbb{R}$ definita come

$$f(x,y) = \begin{cases} \frac{|x| \log(1+xy)}{x^2 + y^2}, & \text{se } (x,y) \neq 0, \\ 0, & \text{se } (x,y) = 0. \end{cases}$$

Si stabilisca in quali punti di Ω la funzione f è differenziabile.

Versione B

Siano $\Omega = \{(x,y) \in \mathbb{R}^2 : xy < 1\}$ e $f: \Omega \to \mathbb{R}$ definita come

$$f(x,y) = \begin{cases} \frac{|y| \log(1-xy)}{x^2 + y^2}, & \text{se } (x,y) \neq 0, \\ 0, & \text{se } (x,y) = 0. \end{cases}$$

Si stabilisca in quali punti di Ω la funzione f è differenziabile.

Versione C

Siano $\Omega = \{(x,y) \in \mathbb{R}^2: \, x^2 + y^2 < 1\}$ e $f:\Omega \to \mathbb{R}$ definita come

$$f(x,y) = \begin{cases} \frac{xy|y|}{\log(1 - (x^2 + y^2))}, & \text{se } (x,y) \neq 0, \\ 0, & \text{se } (x,y) = 0. \end{cases}$$

Si stabilisca in quali punti di Ω la funzione f è differenziabile.

Versione D

Siano $\Omega = \{(x,y) \in \mathbb{R}^2: \, x^2 + y^2 < 1\}$ e $f:\Omega \to \mathbb{R}$ definita come

$$f(x,y) = \begin{cases} \frac{yx|x|}{\log(1 - x^2 - y^2)}, & \text{se } (x,y) \neq 0, \\ 0, & \text{se } (x,y) = 0. \end{cases}$$

Si stabilisca in quali punti di Ω la funzione f è differenziabile.

Seconda prova parziale e prova di recupero, seconda parte, $30~{\rm gennaio}~2017$

Versione A

Si calcoli il volume (misura di Peano-Jordan 3-dimensionale) dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \, x^2 + y^2 + z^2 \le 6 \text{ e } z \ge \sqrt[4]{x^2 + y^2} \right\}.$$

Versione B

Si calcoli il volume (misura di Peano-Jordan 3-dimensionale) dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \, x^2 + y^2 + z^2 \le 6 \text{ e } y \ge \sqrt[4]{x^2 + z^2} \right\}.$$

Terza prova parziale, 16 giugno 2017

1. Sia $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} \cos(\pi x), & \text{se } x \in \left[-\frac{1}{2}, \frac{1}{2}\right], \\ 0, & \text{se } x \in \mathbb{R} \setminus \left[-\frac{1}{2}, \frac{1}{2}\right]. \end{cases}$$

Per $\alpha \in \mathbb{R}$ e per ogni $n \in \mathbb{N}$, si definisca $h_n : \mathbb{R} \to \mathbb{R}$, $h_n(x) = n^{\alpha} f(x - n)$.

- (i) Si determinino, al variare di $\alpha \in \mathbb{R}$, gli insiemi di convergenza puntuale e uniforme della successione di funzioni h_n .
- (ii) Si determinino, al variare di $\alpha \in \mathbb{R}$, gli insiemi di convergenza puntuale e uniforme della serie di funzioni $\sum_{n=0}^{\infty} h_n(x)$.
- 2. Si determini l'integrale generale dell'equazione differenziale

$$y''(t) - 2y'(t) + 2y(t) = e^t \sin^4 t.$$

3. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ definita come

$$f(x,y) = \begin{cases} x + e^y \arctan y, & \text{se } |y| > x^2, \\ x^2 + y^2, & \text{se } |y| \le x^2. \end{cases}$$

Si discutano continuità, derivabilità direzionale e differenziabilità di f in (0,0).

4. Sia γ una curva regolare semplice e chiusa con sostegno

$$\gamma^* = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 + z^2 = 2 \text{ e } x + z = 0\},\$$

orientata in senso antiorario se vista dall'alto. Si consideri su \mathbb{R}^3 la forma differenziale $\omega(x,y,z)=(y^3+\arctan x+3x^2z-z)\,dx+(z+\sin y-\log(1+y^4)+3xy^2)\,dy+(z^5+x^3)\,dz.$ Usando il Teorema di Stokes, si calcoli $\int_{\gamma}\omega$.

30 gennaio 2017

1. Per $\alpha > 0, \beta > 0$, sia $f : \mathbb{R}^2 \to \mathbb{R}$ definita come

$$f(x,y) = \begin{cases} \frac{|y|^{\beta}|x|^{\alpha}}{\sqrt{x^4 + 2y^4}}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

- (i) Si discuta, al variare di $\alpha, \beta \in (0, +\infty)$, la continuità di f in (0, 0).
- (ii) Si discuta, al variare di $\alpha, \beta \in (0, +\infty)$, la differenziabilità di f in (0, 0).
- 2. Si calcolino i seguenti integrali:

(i)
$$\int_{\Omega} (y|x|\log(x^2+y^2)+y^2\arctan x) dx dy$$
, dove

$$\Omega = \left\{ (x, y) \in \mathbb{R}^2 : y > 0 \text{ e } x^2 + \frac{y^2}{9} < 1 \right\};$$

- (ii) $\int_T \frac{x}{x^2 + y^2} dx dy$, dove T è il triangolo di vertici (1, 1), (2, 1) e (2, 2).
- **3.** Sia $F: \mathbb{R}^3 \to \mathbb{R}^2$, $F(t, x, y) = (t^2 + xy + 1, tx + y^2 1)$.
 - (i) Si verifichi che, in un intorno del punto (0, -1, 1), la relazione F(t, x, y) = (0, 0) definisce implicitamente due funzioni x = x(t), y = y(t).
 - (ii) Si determini il versore $T_{\gamma}^*(0,-1,1)$ tangente alla curva $\gamma(t)=(t,x(t),y(t))$ nel punto (0,-1,1)
- 4. Si consideri il problema di Cauchy

$$\begin{cases} y'(x) = x(x-1)\log(2-y^2(x)), \\ y(0) = 0. \end{cases}$$
 (*)

- (i) Si dimostri che (*) ammette un'unica soluzione in grande $\varphi : \mathbb{R} \to \mathbb{R}$.
- (ii) Si stabilisca se esistono i limiti $\lim_{x\to\pm\infty}\varphi(x)$ e, in caso di risposta affermativa, li si determini.
- (iii) Si disegni un grafico qualitativo di φ .

16 giugno 2017

1. Sia $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} \cos(\pi x), & \text{se } x \in \left[-\frac{1}{2}, \frac{1}{2}\right], \\ 0, & \text{se } x \in \mathbb{R} \setminus \left[-\frac{1}{2}, \frac{1}{2}\right]. \end{cases}$$

Per $\alpha \in \mathbb{R}$ e per ogni $n \in \mathbb{N}$, si definisca $h_n : \mathbb{R} \to \mathbb{R}$, $h_n(x) = n^{\alpha} f(x - n)$.

- (i) Si determinino, al variare di $\alpha \in \mathbb{R}$, gli insiemi di convergenza puntuale e uniforme della successione di funzioni h_n .
- (ii) Si determinino, al variare di $\alpha \in \mathbb{R}$, gli insiemi di convergenza puntuale e uniforme della serie di funzioni $\sum_{n=0}^{\infty} h_n(x)$.
- 2. Si determini l'integrale generale dell'equazione differenziale

$$y''(t) - 2y'(t) + 2y(t) = e^t \sin^4 t.$$

3. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ definita come

$$f(x,y) = \begin{cases} x + e^y \arctan y, & \text{se } |y| > x^2, \\ x^2 + y^2, & \text{se } |y| \le x^2. \end{cases}$$

Si discutano continuità, derivabilità direzionale e differenziabilità di f in (0,0).

4. Sia γ una curva regolare semplice e chiusa con sostegno

$$\gamma^* = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 + z^2 = 2 \text{ e } x + z = 0\},\$$

orientata in senso antiorario se vista dall'alto. Si consideri su \mathbb{R}^3 la forma differenziale $\omega(x,y,z)=(y^3+\arctan x+3x^2z-z)\,dx+(z+\sin y-\log(1+y^4)+3xy^2)\,dy+(z^5+x^3)\,dz.$ Usando il Teorema di Stokes, si calcoli $\int_{\gamma}\omega$.

30 giugno 2017

1. Per ogni $n \in \mathbb{N}$, $n \geq 1$, si consideri $f_n : \mathbb{R} \to \mathbb{R}$ definita come

$$f_n(x) = x^n - n \arctan\left(\frac{x^n}{n}\right).$$

- (i) Si determinino gli insiemi di convergenza puntuale e uniforme della successione di funzioni f_n .
- (ii) Si determinino gli insiemi di convergenza puntuale e uniforme della serie di funzioni $\sum_{n=1}^{\infty} f_n(x)$.
- (iii) Si studi il limite $\lim_{n\to+\infty} \int_{-1}^1 f_n(x) dx$.
- 2. Sia $\Omega=\{(x,y)\in\mathbb{R}^2:x\geq0,\,y\geq0,\,x+y\leq2$ e $y^2-x^2\geq1\}.$ Si calcoli

$$\int_{\Omega} \frac{x}{y} \, dx \, dy.$$

3. Siano $U = \{(x,y) \in \mathbb{R}^2 : xy > -1\}$ e $f: U \to \mathbb{R}$ definita come

$$f(x,y) = \begin{cases} y - \frac{1}{2}xy^2, & \text{se } (x,y) \in U \text{ e } x \ge 0, \\ \frac{\log(1+xy)}{x}, & \text{se } (x,y) \in U \text{ e } x < 0. \end{cases}$$

Si stabilisca in quali punti di U la funzione f risulta differenziabile.

4. Si consideri il problema di Cauchy

$$\begin{cases} y'(x) = \frac{e^{-y(x)} - e^{y(x)}}{y(x) - 2} \\ y(0) = 1. \end{cases}$$

- (i) Si discutano esistenza, unicità e prolungabilità delle soluzioni.
- (ii) Si studino le proprietà di monotonia, l'esistenza di punti di massimo/minimo e il comportamento ai limiti dell'intervallo massimale di esistenza delle soluzioni.

7

(iii) Si disegni un grafico qualitativo delle soluzioni.

21 luglio 2017

1. Per ogni $n \in \mathbb{N} \setminus \{0\}$, sia $f_n : \mathbb{R} \to \mathbb{R}$ definita come

$$f_n(x) = \sqrt{n} e^{nx} \left[\sin \left(\frac{e^{nx}}{n} \right) - \log \left(1 + \frac{e^{nx}}{n} \right) \right].$$

- (i) Si determinino gli insiemi di convergenza puntuale e uniforme della successione di funzioni f_n .
- (ii) Si determinino gli insiemi di convergenza puntuale e uniforme della serie di funzioni $\sum_{n=1}^{\infty} f_n(x)$.
- **2.** Sia $A=\{(x,y)\in\mathbb{R}^2:|y|\leq x$ e $(x-1)^2+y^2\leq 1\}.$ Si calcoli

$$\int_{A} \left(y|x^{3} + \arctan x| + \frac{1}{(1+x^{2}+y^{2})^{2}} \right) dx dy.$$

3. Si trovino i punti di massimo e di minimo assoluti della funzione $f(x, y, z) = x^2 + y^2 + z^2$ vincolata all'insieme

$$\{(x, y, z) \in \mathbb{R}^3 : x^4 + y^4 = 1 \text{ e } x^4 + z^4 = 1\}.$$

4. Si consideri il problema di Cauchy

$$\begin{cases} y'(x) = \frac{|\cos(y(x))|}{(1+x^2)y(x)}, \\ y(0) = 1. \end{cases}$$

- (i) Si discutano esistenza, unicità e prolungabilità delle soluzioni.
- (ii) Si studino le proprietà di monotonia, l'esistenza di punti di massimo/minimo e il comportamento ai limiti dell'intervallo massimale di esistenza delle soluzioni.
- (iii) Si disegni un grafico qualitativo delle soluzioni.

4 settembre 2017

1. Al variare del parametro p > 0, si determinino gli insiemi di convergenza puntuale e uniforme della successione di funzioni $f_n : \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \exp\left[-n^p\left(x + \frac{1}{n}\right)^2\right].$$

2. Si calcoli l'integrale

$$\int_{E} \left(x^2 + y^2\right) dx \, dy,$$

dove $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, y \le 1 - \sqrt{3}|x|\}.$

3. Siano $\Omega = \{(x, y, z) \in \mathbb{R}^3 : xyz \neq 0\}$ e $f: \Omega \to \mathbb{R}$ definita come

$$f(x, y, z) = x + y + z + \frac{1}{|xyz|}.$$

- 1. Si determinio i punti stazionari di f e se ne discuta la natura (si stabilisca cioè, per ciascun punto stazionario, se si tratta di un punto di massimo locale, di minimo locale o di sella).
- 2. Si dica se f assume massimo e minimo assoluti in Ω .

4. Si consideri il problema di Cauchy

$$\begin{cases} y'(x) = x y^{2}(x) + 1, \\ y(0) = 0. \end{cases}$$

- 1. Si discutano esistenza, unicità e prolungabilità delle soluzioni; si studino inoltre le proprietà di monotonia, l'esistenza di punti di massimo/minimo e il comportamento ai limiti dell'intervallo massimale di esistenza delle soluzioni.
- 2. Si disegni un grafico qualitativo delle soluzioni.