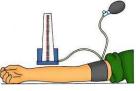
TEST D'IPOTESI

INTRODUZIONE

- •Prendo un campione di 64 pazienti di questo reparto (campione casuale dell' universo dei pazienti afferenti al reparto)
- •La media delle pressioni risulta 133 mmHg
- •Se la pressione dei pazienti del reparto si distribuisse come la pressione della popolazione generale, la media μ dell'universo dei pazienti del reparto dovrebbe coincidere con il valore vero θ della pressione della popolazione generale

Si può affermare che i pazienti del reparto hanno un livello pressorio pari a quello della popolazione generale???

ESEMPIO



La pressione arteriosa sistolica della popolazione maschile si distribuisce pressoché normalmente con una deviazione standard σ =16 e media θ =130. Un campione casuale di 64 soggetti estratto tra i pazienti di un reparto ospedaliero aveva un valore medio di pressione arteriosa sistolica uguale a 133.

Voglio verificare se la pressione dei pazienti di un certo reparto ospedaliero sia diversa dalla pressione della popolazione generale

IL TEST D'IPOTESI

Il test per verificare un'ipotesi è una regola che, basandosi su dati sperimentali, porta alla DECISIONE DI RIFIUTARE oppure NO l'ipotesi in studio.

L'IDEA È:

1) Stabilire $H_0: \mu = \theta$ (ipotesi nulla) $H_1: \mu \neq \theta$ (ipotesi alternativa)

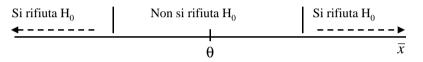
- μ indica la media delle misurazioni registrate.
- θ indica il valore vero

2) Costruire una regola che consenta di rifiutare H_0 se i dati campionari non sono "consistenti" con H_0

In un campione si osserva la media \bar{x} Si rifiuta $\mathbf{H_0}$ se \bar{x} è molto più piccola o molto più grande di θ

Ma quanto più grande o più piccola? (dipende anche dalla variabilità del fenomeno)

SI DEVE SCEGLIERE UNA REGIONE CRITICA



Il problema statistico

Nel definire la zona di rifiuto
c'è bisogno di controllare "il caso"
ovvero la probabilità di sbagliare
e questo lo si può fare!

Il problema statistico

- Anche se la pressione dei pazienti del reparto si distribuisce come la pressione della popolazione generale, è possibile che per caso si osservi una media campionaria che non è pari a θ
- Anche se la pressione dei pazienti del reparto si distribuisce in modo diverso dalla pressione della popolazione generale, è comunque possibile che per caso si osservi una media campionaria molto vicina a quella della popolazione generale (o anche molto più lontana da θ di quanto sia in realtà)

La distribuzione campionaria della media

Per fortuna... possiamo sapere come "agisce il caso"!

Conosciamo la distribuzione teorica dei valori di \bar{x} che possono essere ottenuti "sotto H_0 ", cioè se fosse vera H_0 grazie al teorema del limite centrale:

$$\overline{x} \sim N(\mu = \theta, Var = \sigma^2/n)$$

(se la numerosità campionaria è abbastanza elevata)

Possiamo allora definire la **regione critica di rifiuto** in modo da stabilire a priori la **probabilità di sbagliare** quando rifiutiamo H_0 .

questa probabilità si chiama livello di significatività α.

Nel nostro esempio ...

$$X \sim N(\mu = \theta, \sigma^2)$$
 $X \sim N(130mmHg, 16^2mmHg^2)$

La distribuzione delle medie di campioni di numerosità n=64 tratti dalla nostra variabile casuale X è:

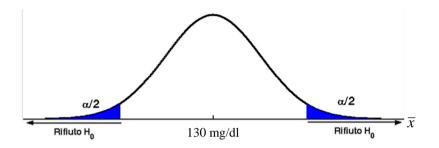
$$X \sim N(130mmHg, \frac{16^2}{64}mmHg^2)$$

... ma è meglio riferirsi alla trasformata Z, ovvero **standardizzare**

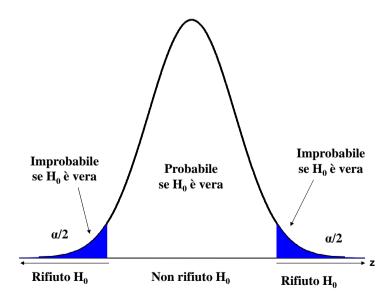
$$Z = \frac{\overline{x} - \theta}{es(\overline{x})} \quad Z \sim N(0,1)$$
Stabilito α , la soglia è $z_{\alpha/2}$
Es.: $\alpha = 0.05 \longrightarrow z_{\alpha/2} = 1.96$
quindi rifiuto H_0 se:
$$\left| \frac{\overline{x} - \theta}{es(\overline{x})} \right| > z_{\alpha/2}$$

$$z = -1.96 \qquad z = 1.96$$

Distribuzione della media campionaria



 α è il livello di significatività in base al quale viene definita la regione critica di rifiuto nelle due code

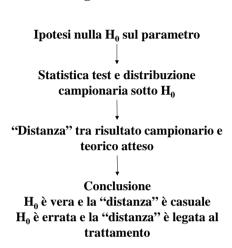


NB: quando rifiuto H_0 potrebbe essere che H_0 sia vera ed è successo l'improbabile!

Il procedimento

Logico Matematico

Logico Statistico



- La logica del test è basata sulla confutazione di un'ipotesi specifica, H₀
- Rispetto ad un'ipotesi specifica posso trovare una specifica distribuzione di campionamento
- L'ipotesi alternativa contiene, invece, un'infinità di valori $\mu \neq \theta$ e quindi di relative distribuzioni di campionamento

Il procedimento

Logico Statistico

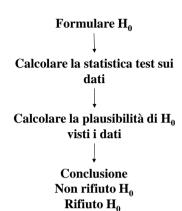
Ipotesi nulla H_0 sul parametro

Statistica test e distribuzione campionaria sotto H_0 "Distanza" tra risultato campionario e teorico atteso

Conclusione H_0 è vera e la "distanza" è casuale H_0 è errata e la "distanza" è legata al

trattamento

Operativo



Se la pressione media è la stessa mi attendo che i valori **z** siano prossimi a 0 (valore atteso di z), mentre i valori molto discosti da 0 sono improbabili

sotto H_0 .

Nel nostro *esempio*:

$$z = \frac{133 - 130}{16/\sqrt{64}} =$$

$$=3/2=1.5$$

z = 1.5

Da cui:
$$pr\{|z| > 1.50\} = 0.06681 \cdot 2 = 0.13362$$

$$p = 0.134$$
 NC

Attenzione: il valore di p <u>non indica</u> la probabilità che l'ipotesi nulla sia vera ...

... ma la probabilità di osservare un risultato come quello ottenuto (o più estremo) se fosse vera l'ipotesi nulla.

Significato di p=0.134 (livello di probabilità sotto H_0)

Se la pressione media fosse la stessa, un risultato campionario uguale o più estremo (nella coda della distribuzione) di quello osservato nel campione (\bar{x} =133 mmHg) si verificherebbe 13 volte su 100.

Questo esprime la forza dell'evidenza contro l'ipotesi nulla (nell'esempio piuttosto debole)

Intervallo di confidenza

Calcoliamo l'intervallo di confidenza al 95% della media

I.C._{95%} =
$$\bar{x} \pm z_{\alpha/2} \sigma / \sqrt{n}$$

I.C._{95%} = $133 \pm 1.96 \times \frac{16}{\sqrt{64}} =$
= $133 \pm 3.92 = (129.08, 136.92)$

- È possibile che la pressione media del reparto sia diversa da quella della popolazione generale, ma i dati non lo evidenziano (p=0.134)
- È plausibile che la pressione del reparto venga dalla distribuzione della pressione della popolazione generale

Conclusione

- Possiamo dire con una buona (95%) confidenza che l'ignoto parametro μ è compreso tra 129.08 e 136.92
- Poiché questo intervallo contiene come valore plausibile per μ il valore 130 mmHg, questo equivale a dire che i nostri dati sono compatibili con l'ipotesi nulla

ESEMPIO 2

Un laboratorio è stato fornito di un nuovo strumento per determinare la quantità di colesterolo nel sangue. Tale strumento misura con:

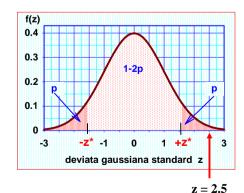
- •Imprecisione pari a $\sigma = 7.0 \text{ mg/dl}$
- •Le misure (o equivalentemente gli errori di misura) hanno distribuzione gaussiana

Voglio dimostrare se lo strumento è accurato

Se il metodo è accurato mi attendo che i valori \mathbf{z} siano prossimi a 0 (valore atteso di \mathbf{z}), mentre i valori molto discosti da 0 sono improbabili sotto \mathbf{H}_0 .

Nel nostro esempio:

$$z = \frac{183.5 - 180.0}{7.0/\sqrt{25}} =$$
$$= 3.5/1.4 = 2.5$$



Da cui: $pr\{|z| > 2.50\} = 0.00621 \cdot 2 = 0.01242$

p = 0.012 rifiuto H_0

... allora

- •Prendo un campione di sangue (standard) di cui conosco la concentrazione di colesterolo ($\theta = 180.0 \text{ mg/dl}$)
- •Lo misuro n = 25 volte con il nuovo strumento (campione casuale dell' universo delle misure di θ)
- •La media delle misure risulta $\bar{x} = 183.5 \text{ mg/dl}$
- •Se il **metodo** è **accurato**, la media μ dell'universo di misure coincide con il valore vero θ

È possibile che un metodo del tutto accurato fornisca tale risultato?

Attenzione: il valore di p <u>non indica</u> la probabilità che l'ipotesi nulla sia vera ...

... ma la probabilità di osservare un risultato come quello ottenuto (o più estremo) se fosse vera l'ipotesi nulla.

Significato di p=0.012 (livello di probabilità sotto H_0)

Se in realtà il metodo fosse accurato, un risultato campionario uguale o più estremo (nella coda della distribuzione) di quello osservato nel campione (\bar{x} =183.5 mg/dl) si verificherebbe 12 volte su 1000.

Questo esprime la forza dell'evidenza contro l'ipotesi nulla

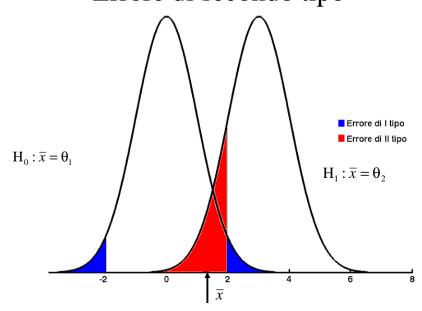
Intervallo di confidenza

Calcoliamo l'intervallo di confidenza al 95% della media

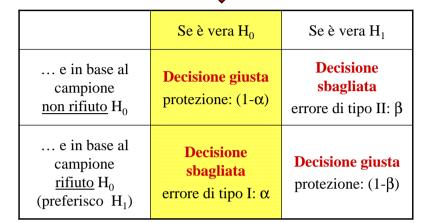
I.C._{95%} =
$$\bar{x} \pm z_{\alpha/2} \sigma / \sqrt{n}$$

I.C._{95%} = $183.5 \pm 1.96 \times \frac{7.0}{\sqrt{25}} =$
= $183.5 \pm 2.74 = (180.76, 186.24)$

Errore di secondo tipo



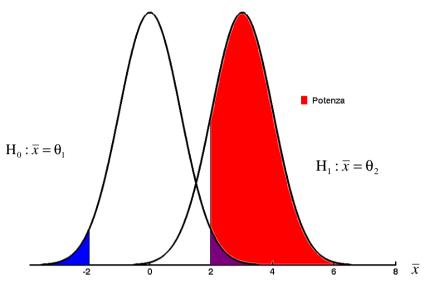
Criterio di decisione



Criterio di decisione

	Se è vera H ₀	Se è vera H ₁
e in base al campione non rifiuto H ₀	Decisione giusta protezione: (1-α)	Decisione sbagliata errore di tipo II: β
e in base al campione rifiuto H ₀ (preferisco H ₁)	Decisione sbagliata errore di tipo I: α	Decisione giusta protezione: (1-β)

Potenza del test



Rischio di errore di tipo I (α):

Probabilità di rifiutare H₀ quando è vera H₀

es. si conclude che B è meglio (o peggio) di A quando in realtà non lo è (i trattamenti non differiscono).

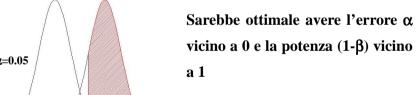
Di solito si fissa ≤ 5%

Potenza del test $(1-\beta)$:

Probabilità di rifiutare H_0 quando è vera una specifica H_1

es. si conclude che B differisce da A quando effettivamente B è meglio o peggio di A.

Di solito si fissa ≥ 80%



α=0.05

Ma succede che:

se α ↓, allora la potenza ↓

come mostrato in figura

(dall'alto al basso)

Oppure:

se la potenza ↑, allora α ↑

(dal basso all'alto)

Relazione tra test d'ipotesi e IC

Se:
$$x_S^* < \overline{x} < x_D^*$$

NON RIFIUTO H₀

So che ho prob. $(1-\alpha)$ che ciò si verifichi

Intervallo di probabilità

$$\theta - z_{\alpha/2} \sigma / \sqrt{n} < \overline{x} < \theta + z_{\alpha/2} \sigma / \sqrt{n}$$

Se lo scrivo in funzione di \bar{x} ho:

$$\overline{x} - z_{\alpha/2} \, \sigma / \sqrt{n} < \theta < \overline{x} + z_{\alpha/2} \, \sigma / \sqrt{n}$$

che è l'intervallo di confidenza al 95% per il parametro μ (se α =0.05)

Quindi, se <u>non</u> ho rifiutato H_0 : μ = θ , al livello di significatività α ,

ne deriva che l'IC a $(1-\alpha)\%$ include $\mu=\theta$

Viceversa ...

Se rifiuto H_0 , l'IC a $(1-\alpha)\%$ non include il valore $\mu=\theta$

Nel nostro esempio (con $\sigma=16$ mmHg)

 H_0 : μ =130.0 mmHg α =0.05

Su un campione n=64 ho ottenuto

 $\bar{x} = 133 \, mmHg$

IC al 95% per μ è:

$$133 - 1.96 \cdot 16 / \sqrt{64} < \mu < 133 + 1.96 \cdot 16 / \sqrt{64}$$

 $129.08 < \mu < 136.92$

Riassumendo:

Test su H₀ e IC: due lati della stessa medaglia!

1) Dato il valore campionario:

$$z = \frac{\overline{x} - \theta}{\sigma / \sqrt{n}} = 1.50 e \Pr\{|z| > 1.50\} = 0.134$$

"p-value"=0.134 ovvero p>0.05

Se fosse vera H0, un risultato uguale o più estremo di quello ottenuto si verificherebbe più di 5 volte su 100 (13 volte su 100)

2) IC al 95% per μ è (129.08; 136.92)

In base all'osservazione campionaria, il valore vero del parametro μ sarebbe compreso tra 129 e 137, con la probabilità che questa affermazione sia FALSA 5 volte su 100