Risposta- es1

Costruiamo la tabella di frequenze attese sotto l'ipotesi di indipendenza delle variabili.

	Non fumatori	Fumatori di pipa	Totale
Morti	124.2	46.8	171
Vivi	942.8	355.2	1298
Totale	1067	402	1469

$$X^{2} = \frac{\left(117 - 124.2\right)^{2}}{124.2} + \frac{\left(54 - 46.8\right)^{2}}{46.8} + \frac{\left(950 - 942.8\right)^{2}}{942.8} + \frac{\left(348 - 355.2\right)^{2}}{355.2} = 1.73$$

I gradi di libertà sono v=(2-1)*(2-1)=1; il valore critico al livello di significatività del 5% è $\chi^2_{0.05}=3.84$. Poiché il valore della statistica chi-quadro è minore del valore critico, i dati ci consentono di non rifiutare l'ipotesi nulla: non c'è evidente associazione tra la morte e il fumo di pipa.

Soluzione (2)

$$\chi^{2} = \frac{(252 - 238)^{2}}{238} + \frac{(145 - 140.5)^{2}}{140.5} + \frac{(103 - 121.5)^{2}}{121.5} + \frac{(224 - 238)^{2}}{238} + \frac{(136 - 140.5)^{2}}{140.5} + \frac{(140 - 121.5)^{2}}{121.5} = 7.57$$

I gradi di libertà sono $v=(2-1)^*(3-1)=2$; il valore critico al livello di significatività del 5% è $\chi^2_{0.05}=5.991$. Poiché il valore della statistica chi-quadro è maggiore del valore critico, i dati consentono di rifiutare l'ipotesi nulla: c'è evidenza statistica di efficacia del vaccino

Esercizio 2: Soluzione (1)

	Nessuna influenza	Una influenza	Più di una influenza	Totale	
Vaccinati	252	145	103	500	
Non vaccinati	224	136	140	500	
Totale	476	281	243	1000	

Costruiamo la tabella di frequenze attese sotto l'ipotesi nulla di assenza di associazione

	Nessuna	Una	Più di una	Totala
	influenza	influenza	influenza	Totale
Vaccinati	238	140.5	121.5	500
Non vaccinati	238	140.5	121.5	500
Totale	476	281	243	1000

Esercizio 3: Soluzione (1)

Costruiamo la tabella delle frequenze attese

	biondo	rosso	castano	bruno	nero	Totale
Maschi	614.37	116.82	825.29	516.48	27.04	2100
Femmine	521.63	99.18	700.71	438.52	22.96	1783
Totale	1136	216	1526	955	50	3883

$$\chi^{2} = \frac{(592 - 614.37)^{2}}{614.37} + \frac{(119 - 116.82)^{2}}{116.82} + \frac{(849 - 825.29)^{2}}{825.29} + \frac{(504 - 516.48)^{2}}{516.48} + \frac{(36 - 27.04)^{2}}{27.04} + \frac{(544 - 521.63)^{2}}{521.63} + \frac{(97 - 99.18)^{2}}{99.18} + \frac{(677 - 700.71)^{2}}{700.71} + \frac{(451 - 438.52)^{2}}{438.52} + \frac{(14 - 22.96)^{2}}{22.96} = 10.47$$

Soluzione (2)

I gradi di libertà sono ν =(2-1)*(5-1)=4; il valore critico al livello di significatività del 1% è $\chi^2_{0.01}$ =13.277. Poiché il valore della statistica chi-quadro è minore del valore critico, i dati ci consentono di non rifiutare l'ipotesi nulla, non esiste pertanto associazione tra sesso e colore dei capelli

Risposta (2)

E se avessi eseguito un test per il confronto di due proporzioni?

È necessario in primo luogo definire l'ipotesi che si vuole saggiare: "Il menarca precoce non influenza la crescita" vs "Il menarca precoce riduce la crescita":

$$\begin{cases} H_0: \pi_P = \pi_{NP} \\ H_1: \pi_P \neq \pi_{NP} \end{cases} \quad p_P = 51/70 = 0.72857 \quad p_{NP} = 32/50 = 0.64 \\ H_1: \pi_P \neq \pi_{NP} \quad p = (51+32)/(70+50) = 0.692 \end{cases}$$

$$z = \frac{p_P - p_{NP}}{\sqrt{\hat{p}(1-\hat{p})(1/n_P + 1/n_P)}} = \frac{0.72857 - 0.64}{\sqrt{0.692 \cdot 0.308(\frac{1}{70} + \frac{1}{50})}} = \frac{0.08857}{\sqrt{0.00731}} = \frac{0.08857}{0.08550} = 1.04 \quad \text{Stessa conclusione!!!}$$

Esercizio 4: Risposta (1)

	Menarca		
Altezza	NO	SI	<u>Totale</u>
< 160 cm	34.58	48.42	83
≥ 160 cm	15.42	21.58	37
Totale	50	50	100

$$X^{2} = \frac{\left(32 - 34.58\right)^{2}}{34.58} + \frac{\left(51 - 48.42\right)^{2}}{48.42} + \frac{\left(18 - 15.42\right)^{2}}{15.42} + \frac{\left(19 - 21.58\right)^{2}}{21.58} = 1.07$$

I gradi di libertà sono $v=(2-1)^*(2-1)=1$; il valore critico al livello di significatività del 5% è $\chi^2_{0.05}=3.841$. Poiché il valore della statistica chi-quadro è minore del valore critico, non si rifiuta l'ipotesi nulla. Non esiste quindi indicazione di associazione tra altezza a 18 anni e menarca precoce.

Esercizio 5: Risposta

	Cambiamento					
Inf.	Marcat	Moderat	Legger	Stazionari	Peggiorat	Total
11111.	0	0	0	0	0	e
Bassa	13.22	30.86	42.61	48.49	8.82	144
Alta	4.78	11.14	15.39	17.51	3.18	52
Totale	18	42	58	66	12	196

$$X^2=6.87$$

i gradi di libertà sono $\nu=(2-1)*(5-1)=4$.

Il valore critico con α =0.05 è $\chi^2_{0.05}$ =9.488, perciò in base ai dati non possiamo rifiutare l'ipotesi nulla