(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 11.3' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[     52349,       1072]
NotebookOptionsPosition[     51033,       1041]
NotebookOutlinePosition[     51386,       1057]
CellTagsIndexPosition[     51343,       1054]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{

Cell[CellGroupData[{
Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
   "Funzioni", " ", "potenza", " ", "con", " ", "esponente", " ", "intero", 
    " ", "e", " ", "positivo"}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{"Manipulate", "[", 
   RowBox[{
    RowBox[{"Plot", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"x", ",", 
        RowBox[{"x", "^", "n"}]}], "}"}], ",", "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{"x", ",", 
        RowBox[{"-", "4"}], ",", "4"}], "}"}], ",", 
      RowBox[{"AxesLabel", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{"x", ",", "y"}], "}"}]}], ",", 
      RowBox[{"AxesOrigin", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{"0", ",", "0"}], "}"}]}], ",", 
      RowBox[{"PlotRange", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{
           RowBox[{"-", "4"}], ",", "4"}], "}"}], ",", 
         RowBox[{"{", 
          RowBox[{
           RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",", 
      RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", 
      RowBox[{"PlotStyle", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{"Dashed", ",", "Black"}], "}"}]}], ",", 
      RowBox[{"Epilog", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"PointSize", "[", "Medium", "]"}], ",", "Black", ",", 
         RowBox[{"Point", "[", 
          RowBox[{"{", 
           RowBox[{"1", ",", "1"}], "}"}], "]"}]}], "}"}]}]}], "]"}], ",", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"n", ",", "2"}], "}"}], ",", "1", ",", "10", ",", "1", ",", 
      RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}]}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.7479951056975327`*^9, 3.747995106463951*^9}, {
  3.7479991994787903`*^9, 3.7479992301675453`*^9}, {3.747999277750053*^9, 
  3.747999286579962*^9}, {3.747999400944862*^9, 3.747999416868465*^9}, {
  3.747999452317775*^9, 3.7479996423563643`*^9}, {3.7479996746179543`*^9, 
  3.7479997369932137`*^9}},
 CellLabel->"In[73]:=",ExpressionUUID->"d4d6c06a-ec80-4fd5-9bb4-e3998fd3c00e"],

Cell[BoxData[
 TagBox[
  StyleBox[
   DynamicModuleBox[{$CellContext`n$$ = 2, Typeset`show$$ = True, 
    Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", 
    Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = 
    "\"untitled\"", Typeset`specs$$ = {{{
       Hold[$CellContext`n$$], 2}, 1, 10, 1}}, Typeset`size$$ = {
    720., {358., 370.}}, Typeset`update$$ = 0, Typeset`initDone$$, 
    Typeset`skipInitDone$$ = True, $CellContext`n$121122$$ = 0}, 
    DynamicBox[Manipulate`ManipulateBoxes[
     1, StandardForm, "Variables" :> {$CellContext`n$$ = 2}, 
      "ControllerVariables" :> {
        Hold[$CellContext`n$$, $CellContext`n$121122$$, 0]}, 
      "OtherVariables" :> {
       Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, 
        Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, 
        Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
         Typeset`skipInitDone$$}, "Body" :> 
      Plot[{$CellContext`x, $CellContext`x^$CellContext`n$$}, \
{$CellContext`x, -4, 4}, AxesLabel -> {$CellContext`x, $CellContext`y}, 
        AxesOrigin -> {0, 0}, PlotRange -> {{-4, 4}, {-4, 4}}, AspectRatio -> 
        1, PlotStyle -> {Dashed, Black}, Epilog -> {
          PointSize[Medium], Black, 
          Point[{1, 1}]}], 
      "Specifications" :> {{{$CellContext`n$$, 2}, 1, 10, 1, Appearance -> 
         "Labeled"}}, "Options" :> {}, "DefaultOptions" :> {}],
     ImageSizeCache->{806., {438., 450.}},
     SingleEvaluation->True],
    Deinitialization:>None,
    DynamicModuleValues:>{},
    SynchronousInitialization->True,
    UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
    UnsavedVariables:>{Typeset`initDone$$},
    UntrackedVariables:>{Typeset`size$$}], "Manipulate",
   Deployed->True,
   StripOnInput->False],
  Manipulate`InterpretManipulate[1]]], "Output",
 CellChangeTimes->{
  3.747999231408136*^9, {3.7479992807585993`*^9, 3.7479992872160883`*^9}, 
   3.747999417834805*^9, 3.747999459252952*^9, {3.747999508229591*^9, 
   3.747999587157707*^9}, 3.74799961726676*^9, {3.7479996480116253`*^9, 
   3.7479997375308247`*^9}, 3.7480014446726503`*^9, 3.748019082014728*^9},
 CellLabel->"Out[73]=",ExpressionUUID->"af4c1dcb-dbeb-443b-8868-42225e1278e1"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
   "Funzioni", " ", "potenza", " ", "con", " ", "esponente", " ", 
    "frazionario", " ", "e", " ", "positivo"}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{"Manipulate", "[", 
   RowBox[{
    RowBox[{"Plot", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"x", ",", 
        RowBox[{"Surd", "[", 
         RowBox[{
          RowBox[{"x", "^", "m"}], ",", "n"}], "]"}]}], "}"}], ",", 
      "\[IndentingNewLine]", 
      RowBox[{"{", 
       RowBox[{"x", ",", 
        RowBox[{"-", "4"}], ",", "4"}], "}"}], ",", 
      RowBox[{"AxesLabel", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{"x", ",", "y"}], "}"}]}], ",", 
      RowBox[{"AxesOrigin", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{"0", ",", "0"}], "}"}]}], ",", 
      RowBox[{"PlotRange", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{
           RowBox[{"-", "4"}], ",", "4"}], "}"}], ",", 
         RowBox[{"{", 
          RowBox[{
           RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",", 
      RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", 
      RowBox[{"PlotStyle", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{"Dashed", ",", "Black"}], "}"}]}], ",", 
      RowBox[{"Epilog", "\[Rule]", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"PointSize", "[", "Medium", "]"}], ",", "Black", ",", 
         RowBox[{"Point", "[", 
          RowBox[{"{", 
           RowBox[{"1", ",", "1"}], "}"}], "]"}]}], "}"}]}]}], "]"}], ",", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"m", ",", "1"}], "}"}], ",", "1", ",", "10", ",", "1", ",", 
      RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"n", ",", "3"}], "}"}], ",", "1", ",", "10", ",", "1", ",", 
      RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}]}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.7480012807626133`*^9, 3.748001302875588*^9}, {
  3.7480013419169407`*^9, 3.748001341985224*^9}, {3.748001450993437*^9, 
  3.748001458127795*^9}},
 CellLabel->"In[74]:=",ExpressionUUID->"61d12b13-2c2a-468b-a54e-0735016bc78d"],

Cell[BoxData[
 TagBox[
  StyleBox[
   DynamicModuleBox[{$CellContext`m$$ = 1, $CellContext`n$$ = 3, 
    Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, 
    Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 
    1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
       Hold[$CellContext`m$$], 1}, 1, 10, 1}, {{
       Hold[$CellContext`n$$], 3}, 1, 10, 1}}, Typeset`size$$ = {
    720., {358., 370.}}, Typeset`update$$ = 0, Typeset`initDone$$, 
    Typeset`skipInitDone$$ = True, $CellContext`m$121414$$ = 
    0, $CellContext`n$121415$$ = 0}, 
    DynamicBox[Manipulate`ManipulateBoxes[
     1, StandardForm, 
      "Variables" :> {$CellContext`m$$ = 1, $CellContext`n$$ = 3}, 
      "ControllerVariables" :> {
        Hold[$CellContext`m$$, $CellContext`m$121414$$, 0], 
        Hold[$CellContext`n$$, $CellContext`n$121415$$, 0]}, 
      "OtherVariables" :> {
       Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, 
        Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, 
        Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
         Typeset`skipInitDone$$}, "Body" :> Plot[{$CellContext`x, 
         Surd[$CellContext`x^$CellContext`m$$, $CellContext`n$$]}, \
{$CellContext`x, -4, 4}, AxesLabel -> {$CellContext`x, $CellContext`y}, 
        AxesOrigin -> {0, 0}, PlotRange -> {{-4, 4}, {-4, 4}}, AspectRatio -> 
        1, PlotStyle -> {Dashed, Black}, Epilog -> {
          PointSize[Medium], Black, 
          Point[{1, 1}]}], 
      "Specifications" :> {{{$CellContext`m$$, 1}, 1, 10, 1, Appearance -> 
         "Labeled"}, {{$CellContext`n$$, 3}, 1, 10, 1, Appearance -> 
         "Labeled"}}, "Options" :> {}, "DefaultOptions" :> {}],
     ImageSizeCache->{806., {455., 467.}},
     SingleEvaluation->True],
    Deinitialization:>None,
    DynamicModuleValues:>{},
    SynchronousInitialization->True,
    UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
    UnsavedVariables:>{Typeset`initDone$$},
    UntrackedVariables:>{Typeset`size$$}], "Manipulate",
   Deployed->True,
   StripOnInput->False],
  Manipulate`InterpretManipulate[1]]], "Output",
 CellChangeTimes->{
  3.748001304510889*^9, {3.7480013423885813`*^9, 3.748001361109405*^9}, 
   3.748001413082694*^9, 3.748001463222136*^9, 3.748004834080016*^9, 
   3.7480190856164103`*^9},
 CellLabel->"Out[74]=",ExpressionUUID->"57f158f0-5b7b-4b09-91cd-95f78b2670a9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", 
   RowBox[{
   "Funzioni", " ", "potenza", " ", "con", " ", "esponente", " ", 
    "frazionario", " ", "e", " ", "positivo"}], "*)"}], "\[IndentingNewLine]", 
  RowBox[{"Plot", "[", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"x", ",", 
      RowBox[{"Sqrt", "[", "x", "]"}], ",", 
      RowBox[{"Surd", "[", 
       RowBox[{"x", ",", "3"}], "]"}], ",", 
      RowBox[{"x", "^", 
       RowBox[{"{", 
        RowBox[{"1", "/", "4"}], "}"}]}], ",", 
      RowBox[{"Surd", "[", 
       RowBox[{"x", ",", "5"}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", 
    RowBox[{"{", 
     RowBox[{"x", ",", 
      RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", 
    RowBox[{"AxesLabel", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{"x", ",", "y"}], "}"}]}], ",", 
    RowBox[{"AxesOrigin", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{"0", ",", "0"}], "}"}]}], ",", 
    RowBox[{"PlotRange", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",", 
    RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", 
    RowBox[{"PlotStyle", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{"Dashed", ",", "Black", ",", "Red", ",", 
       RowBox[{"{", 
        RowBox[{"Black", ",", "Dashed"}], "}"}], ",", 
       RowBox[{"{", 
        RowBox[{"Red", ",", "Dashed"}], "}"}]}], "}"}]}], ",", 
    RowBox[{"Epilog", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"PointSize", "[", "Medium", "]"}], ",", "Black", ",", 
       RowBox[{"Point", "[", 
        RowBox[{"{", 
         RowBox[{"1", ",", "1"}], "}"}], "]"}]}], "}"}]}]}], "]"}]}]], "Input",\

 CellChangeTimes->{{3.748001486470065*^9, 3.748001668877186*^9}, {
  3.74800171208251*^9, 3.7480017445625134`*^9}, {3.748001782527574*^9, 
  3.7480017844194613`*^9}},
 CellLabel->"In[75]:=",ExpressionUUID->"c5d93e08-3c79-40a6-8e38-9921dba6f939"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJxF1P0vFHAcwPHjGJ08Lppy5HGeZqjOImOKISdu7DRxTkvNQ+qW7swmdK2r
aazYLqm13Z1IO1EyOXeebh6WKQ8d7mLncnkY7nC6u3DVls/3h/de/8HbNbuQ
dNUYg8Ek/u2fAREOKwaDQXRgoc6dpdMj370P8trSIIO9idnKVWSILXP2swQZ
qVCPPGtBkh6MNp+kIOljzIJrwn1wctJipZe6B+J7Co+EOO2C7XkDptbf9WBW
ZZBqpkIHap+UsEQRWpBjNefIlu+A9fFBtImHGrAin8rwidsGS7Bv6LS1TZBa
NubxrVEN1nYvsutzVeCnee/Db93WQXebyKiUl6tgmy8rd0GxBM6LW08QCEpw
0b82WPRRAdqWNhECjOSgP2HDn7clA++dX/vSyZCA9in86ktHx8G2HbH1kMcI
yJMuPl5mCsGMZKcP0itckKy4GGMS1d91YCeuZKqviBNx4OkFI+fyNBHorurS
hfYNg3GcmdHEtHEwmmiH1bRLwCqKpCywQwYOJuItk+zk4Jqrfel4nQIsuu1H
rXJQghKZDSlnaAnMKj770yxhFez3C3nUb7oOeh0SLHFjVSBekBdtylKDGL1x
E21hE/yV3J0p9twGpacoxz2ZGvAm2cbWTbYDOtb8SDPBa0F++qvXWwwdSA6/
GzvUrQdbMwvcQnd/g1rcOWxn6h5I+hpGwLP3QVyYRa/gBbKXO3vhMgcZyCim
PucjrVw6Kh3FyOH8YIX9JjLS3KfaKsEAam9pj/GTkS3SQR6RjHRuyemqzEbu
pnKVuGJkB8cl3KwBecNyY7ChGelFF5JiWpE18RnX7wuQNHXdU+wE0jc915kz
jZQPnGmKmkMmsaeF5ctIc+PGONcNpCiPPtmzjbwzFUPJ0iP/fwz8A3YspKQ=

       "]]},
     Annotation[#, "Charting`Private`Tag$121731#1"]& ], 
    TagBox[
     {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], 
      LineBox[CompressedData["
1:eJwVzX081AcAx3FlIiUPPbyiDsfylMpDZanz1Qijax6yrBWO0YYi8zwqZU0l
mW5qec7laXJEnUZdOeahGt25c+XUkJKiu3N+Id1v7Y/P6/PnmxoS7Ru2UEVF
JehT/7/OPSDjjFavU6iT617eomBYaw9GqG3YjApuaHn2+98gkp0s1pkJgPpM
qp1gvgzSr83l0bHhME1tG1jzqBo/X3TrjtwcAzWV1TnGBnVQHkvOL94UD+sV
u8ReP97AiYiaKIFVCjbVxLKtEhqh+s1zmrrZcZwxXCzW8LsFnvGZXwt1TmKR
MMVEd0kTMvJMYhyyM1BoP/VHzbXbcFvaEvB4ya/osFZN0rNoRuf7SUs19Sxs
Xb0qvlp+B2cPZ+oVZ2TDN61xTNuZi3JZTtra9BxsbKxYtMz5Hg4dsgq/pcxF
aFMx8ebIfXiYJO4/RWPCoVpPdVR5HxaDvD3eqb+D4Xi64MTZVoz7HnQYn70E
7Tee07p5PEQ55WgYThdgl/4E8+DpdtBnJfPj9kUYSvfou/Kh/ZNjKePEFoNx
KTD2pyN/Y4Y59NZipgSUIK9Lp+gduK35s7A1vgwDNeMqPopOlGxYKWCbsJCT
TBE7hXThtDe7t6CHBevsO0kB/3Rhb97IgwTLcgjLch8dKu2GlLq71WqwEgzj
Lp7mlocw20Zh57rWIvEwjWtv1IOlBzg1x2W1YE2LbAsTezB1zKc6qogNZ9ul
b3R6ehA83OprmloHL4G7dj6tFxst3tM/CutRTPViFL7oRVdDkGv9mUY0XWyf
vWrMx452a575v42Ym796ssyNjzrR7M6irTeRNNZd6R/FR97sRZwbuYm+88JN
olt8fI9OxzAaB4FrbpCJHgKQ3Ta2+rLbEHotcMoK6sOW4QWG6QFcxKWPUFeH
ibDxr30ymyouIuPl0eJ0Ecxyr7f9O8tFD/eAXVyRCEtKa7aU0O+hRCj5wrlf
hHnvAAk5eQ+Pd4rzvnDvx2Ad25Jr2wrmYnuf5VQximMC22icNtSOqbU5cJ/A
VNo869jahd2Vif6CmxKkPnLJUEx0QZ5+Wt/8HwlE1Q+W1ep3Y/quc2j4SwnO
hg2YUo92I8s8ZG/lqkFIn87R1Y0f4Lld4GokDOJu+7argrSHcGlgLhiyfYb9
+RzPqG09CK+nORgUPMdXZU8e7Qngg++yaMModQi76Hqq0zf7wZ1XuO9IGcGF
oP4TNhwJKKO6WvToUXTsoWh56w0BMXEVR4NeYYK68hj/ygjWxu2Qaix9jfi4
9YwLq15ib71b5+K8cfRLdHzDO8cg4HWXO1u+RXDyjlfqu9/AsYorN8ieAG+9
w1me2iR8zr88JVZOwmxxyxjLQwp/i9/zLD+XgtISuUstUwYjPS2nTK4UKnML
q2KH5dhe59gwyZDhvc+dwPZ1Ckjjfnnnp5BhYHPQmnUZ05C/Y/gNnZcjZp+O
romEwGBpbsqU0RT0mS8CPqPMQDW8mRLKmkLtdyUVU0mz2O7YlGZuo8A+2nGP
zjtzWKBIaf2arUB94GETx/kPaJYcOa9nOY0ZTRfV2/4fwWcVRplXT8P38fat
lMtK2EXwI6eMCGhuX3K/pVAJIWWn+AOVwH3WU68DZUp8NHi14rPPCdgkJTPy
a5Xwy9Qil1sQWGbEydJvV4Lxwe6yrQ2Brii7kZVyJZi6Lq9DnQk4a1jmLNtN
wlD5bfC1YAIzR2cMan1I2Ev/elsRQoA90HGNvo+ESfVbz+rvCRiyw5uzQkjU
r1Ok1v5AYN6f9VIzmUSKcKKpMYYAp8yIpl5OwrV3T37TCQJHtN51lP9Jwij+
lGfTSQJmiXd93epJvDalP+RkEGB6HvzhlxYSFbIe91uZBGJlVy6qCj55oS+M
6nMIWH0XYVgmJpGQqxfGziUw1Lat6stnJMZHt6RdZxLwviy+m/6aREPpObOq
ywQ0FlZ+RX1HwvqxkFN+hQA3MrHvnoKEdoPrWlYBgQShW1DwHIlnlBd+pUUE
NmLVOEmSGB3mBhaVEPgPA9P7Rg==
       "]]},
     Annotation[#, "Charting`Private`Tag$121731#2"]& ], 
    TagBox[
     {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], 
      LineBox[CompressedData["
1:eJwtl2k0FAofxm1FSOi2qOw1llBKuhL/lKhkr+hK0SKFkggtZKnQ5sqaNSK6
MtZQ8ScmOzHWGWJmMtnNmCFLmfe+59znnOc8H34fn08/xfPXbS4J8PHxtf/b
/68WrB/j8Xi4yZ/DTVfl4vUF5bCFRR7GFe2pi1bhYn6RNoEzy8MuS7V7Dwlc
3KVqfp45zkOX3yujr2zl4l6pUEpzDw/bcpvctRS4eIDBbkwg8vCx+ERN4QYu
2jxq+Wf3OR46L1wjZ67kom9bqMflymWsvjhRs/s7Bzs7xcaqnX/joHGH3GAc
B2Wrrv+xd8sv7BVKv+VpwcESt9oVawYWsbo7oeuQEAednmiz+oIXcJzP0VCt
YAbno+6EIcwj1WluacRpBjMkvsnE0+aQfMZW+ePKGUw6pu1FDp/Fq659a1+9
ZWOwu7Of2lEujn76JrTbmo13BN/6ek3OoLT1T6W5cRY632/b2p3NxvYu0/HF
MBbGVAzHJ11l4bUNO8v1lVn4YVBVPFdpCi/E90Gh4zQqSx44eCJlHEWbOX7J
vlNYqB52lc4YweAdFT87PSZxkFSgoKvLROR/KWF6cgKHNWJ24XsGqgjS/AL3
jaNUQI6uFj8NTXNJKrbjo6ihO62RyenHtIXptqTIEQwxnvxa7teD3qX03i8/
mPj5yISlzoUe5BMRCaodYiKf+XhrnnkPKj6Rolb0MfHuydHmDKUeDBfcG5HR
xMRbLsP1T5u7MbGQtX4fkYmuYQNVzgrduG/88OenPkw83tySv6q+Ex3OJsDL
5WFcdyIv8vSGDgw6YKR9gm8YCwmPPxwW7MAXxttuPJn/jlYLl79rT7ejoHwv
s5L1HSNSFP8UrWvHtueHjkjTvuPySPTgh1vtuIOhmnuj+jsy793R2tL9FZvL
y1tEgr7jNcu/4yvU2nDJZa0uLDEwm3tsIoa/DYsjKz2zZhhITxA6cK2vFdfe
3LR/5RgDT333/SEX3oprAsSMib0MBP+zuvdHWlBf2sIks4SBkhnbOw++aUby
2PVSqWsMLJwjranf2oibziprX+il47O36Z8NFxrQxd/s4o8WOrqdDfQpaWnA
xC+UvnM1dNz65U9q+q0GrLpnKKyZR8fYmH+y7tXX48/rlCydEDre1vnbYLd7
HUpMyBX3qtPxoNcZt5SiWtTK/OfJ0es0lCPoya0Lq8XVDb/lRC7QcKlvXfvj
M7Voe7jBuuQUDYuN2nT9V9Ti0qhEKsWAhgSpgwIn7GqQTLIvOipGQ9F8lYRV
S9X4nDThcCd9CDOpw09HQyuxjXBjLj1wECl316cm767Eqil98agLgyghZ5pv
Ta9A4ub+WAvTQbzllN1RDhV4zG61u4bEIJoMX90QsfgRt5kOGjolfMORqek0
dc9yrCVGCJW9HsAtkQqF3+TKMZqiwON/MIBW2tY1US1lmGPvZix8aQDLbhYO
L6qXISOIUGmwdQDD573Vm4bfY29VSJdmaj+qCywWuTkUY0KIWP39B1Q8m6FO
khctxo/CHo25TlSMMnboJpcVoYlIV463PhUXH36a119fhO8yfaRbpinYJBZo
IN5egA+tEn4ft6Ug3zuiRVVgAVobNkiu2E5BHYuhc95aBajx5V0yCFAwKdIo
uP9xPiZbFjlrEPuwV13k2emneXjKkHflqkAfHvC4kl899g4vZ2ebVHT1Yjax
sUPtyDsMyHCW8cjuRX+dpxsWBXJx8rrZwyazXtxkKP3qpV8OLmt27CKF96Cj
9ZZi6oXXeEmeoLKK2oUTnFk9n9oMfHiz0SHgVRfejW1DiW0Z6CrxnP7BpQuT
qMFNRsxXOB7KqD802YnFTR0ky/YUPNgR0WMyQsZOyYftwVHJuGODoicxnYyc
k3oDJbZJmLpUGb/FgYy7hlK5m7sTkP6SMuRK6kAi1115hBKNAroTm47dbsdW
PYUdm5NeYJwkY/aSfDtOBZD3WThGoVBqTlZU1Ve0l/Z+7YrPsf6J0NsrY20Y
l0T52Gr0FPeP7hUclWjDboIRWac2An2skmP+JrSirb6EAH/DA+xOJ1IiCM0Y
RfKWuWwWgsw+7lKZSBN+taTubGm5j4dM/L7JtjegXHFIpEvaXXTednVs0a8e
E+utcFemL9qsztLcM/cFNw7ITi3neOFN9kPdu3+ScDujSy/W0Q1fgYegq1IN
EsQ947QuO2NyDOvRBe8qvN+p2rm5xhzdR6up2FiGfP/lWFDCKq3wl6CxZuDq
Ck0dWEFLcdQ8WgDd7OBUyXl74BxxGf/iUwEsS5WZ614u0H54dexfo9Vw54VJ
o5uOJ6x8ZLnmuWEtLAf4J6bu8IFWvqR7o0pf4P7VXHey+m0oCcveo1lVB4Kn
Bg2ECYGgTpgrbt3eADUK4Y+SJYPhtvN2CV+vRgiNVfLc+ywUQi52j1onNYGJ
+Cf7drFHYKOgNf8rrxnqf06prRB+AkLBTXYTya0Q4REmnRr6DMabEk+FB7ZB
Fjvy3pagSNgj61EWp/4VLl9Wd3m/HAXWzAPVMuyvcETJ968Qg2jgl6tpo5m3
g+pAjYXV3RhQXbsrfCqrHcZsHPeOLcRBBt/07d2WHeBuGCkiN5sElzqvCCYG
ksF8of/X2O4UaPP1vaf6hQxaxWrsUq9U6Pu2cW2zaCfMR9MmVOfToMJzSLLj
WSeUi97p+uyTAfK/nrllhHZBmuY6MlHpNYzeYKm+qemCh1bEr0ltr6HtuLqI
CX83nIhlNN1Sy4IT2UT+NL9uYCke/6w+kA2/C+U2B53uAYKeLDHKOA9Ulvun
AqZ6QfxMaW4gOw8qsp1d0mT7gBNg/dY9hQjVU/KP1h7vAyf6Zxvlu/kQuvPA
OuE3faCl+tP8d1cBjG0k9nw8SYGGonPGBeHFoPHxpo7ZSyrsJ2nUqAwVw9iF
xEftVVTI714wStEtgdqiWLEpJhViF17AY0YJMG09i7na/XAR6vddMiiFwKfK
9YE1/cBr3Kktwy6HXZUVtv7dA7CHzi8XZI9waVYvqL5uELQ+2LF35iCUcY2X
Z+mDQIh6Vzu0gJDrHekz+3sQxF7l7kkzrwI3y+bs9zJD8MvKvp83VQXvJ1tt
1S2GYCCfqIbanyFpb4T70aIhSPU8W2tQWgunUzaSzT1pkHRmVV7MYC2svlMX
EX+HBvFHiuMmhUngeUQcOx/SIFJB1C3ZngSBoVEnlZJpcP9ridTvBRL80DGS
3tBAA+edq8992l8HrA9JPRFydFBmfVzY97kBeupiteOq6HC35VAod7IBPD1i
gjSb6ND9tkkiT6YRrJst2KVddIi4RFVWvNEIl9LKinLG6MCiLJoLKzSBt3gE
CP3BgEqSXjr5XjOw4zXjiRcZ8Fdi6TF3vTY4azhUEr/MgKMZfS0W9h1wOvuG
xGmZYWA9yHMheXRAIO3K6UjFYYh3DeHph3SAlgTpcLXaMIxoamqr5XWA+FzW
bsl9wxBWdj9aUIgMT2zEii78NQz1LSoOZUQy0HnqxuMJw2A67zOiKNwFscUu
hl/+YMJhc2nB2ZIekFKTykxbYsLzcz33d5b2g9mtgje+gSNQZyG72kqaBrtu
ySUKcUdhUnFdQMdLBjSs7yekaI6Dj/d25+frmeAjW+bcZDoBPf2SNi71IyDp
6T22dH4SnPz3/xA+Pg6LzWzx/aenoGb73oiaFVMw+bzF943tNBBWfRp5fYQF
0Mt9J72RBbKf3A6vCGNDZwLl+fsAFvAtCuR40WdAn+nkmDfCgp/WFWdJ27jw
tdhcYrMpG6g65zZvC50FPfMui7U5bPC0k5RS6p8DKv03w2zFDMhEf7cXkp0H
hpfrYzn7GchzSHvD8VsAOym1hYq8GbAzCDxSX7EIh+TVXg/+moGCsx5K+34t
QdhahclNphyYFz0kWH7yN8w5u05ox3DApl1fVzZ+GSyfpppNUTkgqi9W/Sl5
GTZ7GxVuG+BA9WuK2ZmMZTAKrp05840DO/38nRPzlqEyP4m/aYgDEvKlT2RI
y/CHI8Uuc5gDDe67GOtmlmFVdhrLZpoDB0TUIiWO88DWg6EUJcCF+Rvzm/Ks
edBs1EmtFeQCkVqXaW7Hg8vhkp4/hbggR3T5+OQ8D4qs49TPCHPh18nXTFF/
HhzDNaPK4lwozZA3EM7iAaVZPSZ3HReurZ6uy/qHB58PTwgPrOcCwbfSxqSA
Bz52WadWb+RC9DFH1wef/uVUrTCPTVzwYr98IUjmga/7h/0a8lxQd7gql9HL
gwTylUgHBS7QavVyDn7jwfkAl6oIRS5YxfdWBo3yoDPmRsmIMhdEBLKPKk7z
IJ0dfXvDv7+hm29nFZcHF6/v2GJC4MKtLpNzTos8cL1t9tJbhQv/+Q/85z/w
P/zhDBw=
       "]]},
     Annotation[#, "Charting`Private`Tag$121731#3"]& ], 
    TagBox[
     {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], 
      Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwVzXk4lIsCBnBljUaOW92rGzKKhmOL6th6j5RwCNNJrgidqItq0oJrDy04
5bFEShTNKdXQiUYZkeXaUow9+75kmflwzIj5rvvH+7zP73n/eNVOX6R7rxcT
E2Os5f9dcMQl5jal6YDToK2az1MmftzU6yupY4Rm2RvXQhbK0c6/nqUgcAGt
68VWZ9s68Bw0iYsBPqDm1p7ZbNOIkGSrej8jBhKuqC7JUpogCg9+kKV3FeG9
O6lcWjMifV/6t2j9Bx8T3yys/wcX4s795tIaERBWalItx7io3HH7ZqbCdahN
a+gqZrYg5h6Vsf9ODBo9Xz/ttGiF1UaOS7PcTdjbri4e7GyF9PXjFn63b2Nm
qjBt7nQbapdmaZLSCYi/dr3183Ab4s7fUsyKuYOijFTDk27tYPITw7ZHJSKn
VD6Z09iOs2e1fN6KkjAwW7QY9agD1tRA12jzFPyuF/qrJdmB3b2VRx1DU7GR
3V3KPNmJKbr7/ilhGmR+Mn9CynShnpKnzf7pPvwDM3WeunbhRe1fqjGBGXDd
6XSZ/rwL/gcSZVQWH4J+jDX554GvsBf2rEwZPsIZNQN+Q+xX6BbS+OyALMSH
jt94X/8VgpTB6d2CbHy6KVx4cbQb72RD2iqu5mDP5yJL2sEeZOtsacmn5qK0
pv2IemQPbjjmNz38kguB9sRyEqcHv94bbrhGY4IjTt2sZdALnppdhVbvM/AP
enXuk+tDx6Gxsr/HPUdti+z9mQN9+HA2slRifx6GlqKtsy/1If5VYXFf4gsE
yxzbodnaBw1j5fykQyy8MdpU3HynHxvd2C8j+Cxk/OZ0LLakH/PhTnn+j/Jx
waL5bxHj/fAcqqCrhxbAMD9PqUBlALq7l+xX217jjeaZ0x8ZA6h743Ho9e1C
BAU99udKD8Ks+sdKzYFCRMZNSuUoDaKgXWjxaF8RPr3dkmWmPYh7wmTEDxfh
2+rjpib7QZxBrYm3ORuXdpkIcxIHQdbrGyjx38GySJkkKUPYO7ROJcqlDK67
m9PGZoag+/4EX/95GfzdI103LA9BI+lV1YCwDP1PKOu2SA1D7vHLvdn25WDG
l/0+oTyMFUeXHnK2HLucY1Xi7YbRW5BPKzOogKXhJyNZ5jCyGKeqzNlVcHZU
Tp/+ZQQP3TawUvur8Gzp3+o1x0eQbl2YNiNdDeM+T0ayxwgSd8j6ZbpUo3fd
Jsr6yyOIbCr6YVVYjRH/Ejuz+yPw0qd4cMxqsNI+OWYzPAJ1XonQpKIOb4uG
3tVfGEVoo2XMwkwdhu6yvXoDR9Ge1yDPUqpHu6JF2kjkKOK8u9XVLtUj7Ga5
fnPSKHhfl+2ldzTAJpZ4rPF2FB+qjZ+0hH2Ctvpv3T3Lo3B9wLb1N/6CFN3W
Jf2wMdjkdDUedeFiUi5YbJvvOHixLJ/q81wc6eT+zGOMI/1cNGkazYUqfy6u
PHAcEzo6BjQWF3WOD/wdYsdxqzgyRVyiBf9l3mFpZo+jtlHzZHF+C7RMk0QN
reM4Irg6oSbdhqGILI62yQQO2yuKLxZ1gBssfkhvaQJ3PToi9dk9yGGahGXp
T6HmqDLFUXEQUfmP3bX/9Q0zalvCuRnD2EnfLpXiMI2rV7S97m4dg6XexYBZ
rRl09CjQfWonsFAkPzArMQvPYLNxabtvcBnkNLWVz6JSe39cpeQszCcnP3uH
z0FjA2ci15oHoy/HsmQVeVDm+B2WvMWHQ8hbmZeneBBbXv88YIhAQYAl1+4V
D0tOpaeqdy2gJJVwWiR46Dby+OeumEVQCIpMhwkfjBMKP1B7/gJDwllBI5wP
pZQRFwllAcTInc0O7/lgncz+Yz5IiD8T9ryfF/BxwjzCurZ0GcedGTF7DQi8
PnWearLyHTvdtn8L8CEgkLUUf3d8FQu+mbHmjwjQm033KaeL0MlVpaY1EZA1
lfvIyRThcoun95VmAh9zv/7iliOCwIIW58QloB8U7PWAJcLSjcAguVYC8qrs
BKVqEVIY2ybDOgjU+e8Z3kKIoFc2R3XvI/CzDC1R3o6EoVWCqeT02v8lwTaW
EwnNw/SKvjXnd9c8tT9BYkfoF+3iGQIq+T4lCadJ5NA3/+E7R2DleO6YbDCJ
cxM1+EwQYOeomkszSTjsq1+XKCRwgTJXw3xBokFgXXx2mYBG4Ae61eu1fXYT
Hd8JpNi6n4vlkCjZmqE3u0IggJ+RLN5CIm8iLdlWbB5aJ31VcjpJMGYcvdXW
zWOwyvj5wT4S0avp2wRrdkzv/BA1SULHVaj3VHweMuuf2ajNkbhIU08MkZhH
mV9ga/kCCbcNZIuT5DyutVl5eC6TKCxI/a4pNQ9dbJ0iSRLi3Dkp0Zr/B+oR
ktM=
       "]]},
     Annotation[#, "Charting`Private`Tag$121731#4"]& ], 
    TagBox[
     {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], 
      Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwtl3k0FIr7h5UklK1LVyFLqYSIa4verK0UpZS9unQtLZKtQshWZC1JKCpU
liJkeW2TLWSs2WfGmDHWGZQt8/M75/vHe97znPP8+fzzkb58w/zf9RwcHDNr
9/9fCUQZbDYbIVA9WMiBhTcWZcMWl9h4QjLvy317FuZ9VpGbnWfjqk1815gd
Cw/uNbk8Os7Ga6Whg1W2LNQQCu793s1GV6EQ/lvWLDxCYTY+z2WjXII2o+kC
C81Dm9+r2rERX7c53zZloVdrsJtTxSqmuchZhR1iYUcHH6PK4Q+mb3l9wk2I
hRKVN/7SEF/Bdl8et490Jha61HIJDCxhR6HXOiNkov1jlZmfgYtIXqY6xkUz
cSH2bhjCAlJurfyleIWJ6fyDYomkXxjxWHGk4QATk0+ouLeHz+MCf/MrytIM
Bro6eO87PocOJSMG4nUzeJcz28t9koXVRt6zK49m0CGgdVdXJhOzidNxb8xm
MKGcmpjsPIOtt2KfbBeZwa9Dezd/kJnCiQzSTe2UaZQVPKJ/LmUcKfc+chkI
T+Mn+TBnMoWONAPviYDrUzhEyJdSVx9Fffsn3RI4iVSFhIP4hYImsi6UGL5J
FPLLUldaR8I/42d4Zg5OoIL6tMKb2X4ULRfXVjYdR0clf/+SgX705Np3Z/OJ
cUyVEyA21/XjA2LK/lGjcRTedsDr14t+vP1wYiVGdxx//75eddSwH+WHbrc0
KoxjdcmUBSO+D3OoxNVy3nG01J3yO6Dei66ymi5PahkYZDj5o8S7GzVW9ZSp
SgysPjZxWu1KNxb7G2qJyjOQw2S8JcekG//WIXwx2M3AexZj39NlupGT/vR3
3A4GejpS6yO/d+HmT860TZsYeC1soNJBqgsP58yug+ExPPW9OY+nvgMf2bAi
P0SOYcSP7weCP3VgY5W9m13YGNZ3NOWsJnfg9+JN5C1BY2g00PBh9lYHRuZl
/2fjPYaHpwiZAzs6UPSSCee3y2OoLFiRln+jHUlWPHGF6mMoci4n+uI2Im4V
X2pu6KXjJ7lHX404iZhhJ7LVoJOOZxadRlSm25D+wPtaUSsdI1KkNXnr2vDJ
8nbxmFo6rtLjh756tuE50dlQ7hw6jt6/qyTe9QMFBw02//an4/XTMYnl+1px
2EGDFLmTjplzJyYS1rWibVTu/rNidCQ/33Dk+s8W/HHo+arQVjqeH/GiSYa3
oPtyM8e9jXQEH1v1AHozSllmInuChoLp+zv0333Hspfl74qKafjpF0Ggflcj
at/Q3eh0goZR2a+rDy82oKbulU1p+jR0sfW/U9jcgBMLnxNatGm465tm32vP
BjxIJrXx7afh04T3b+/X16MdT64SJx8NfdVidFVd63DENu/It/q17tytXVI+
16KzzVKbr/YoSsppSYqE1eJkybKHmMooLv8UaXtkXYuvNrZIZe4ZxQK9VnUf
rlpk2BKT4v8aRTkh/fXnLtTgFg+35deTVOTN2/OcZ7kKz6AZ94VkKr7po0aO
BVfglY9cu0rHRrD3nmjqS9UKTLXwnIsYHEF+yaN5ZuRyfHaRHKvfPoKe9pnE
EihHCSnpS05lI2hMdd4WsVS61k+CrE/kCNKnptPkb5bgA9ePwkfkR1A8WurT
oGQJBuoljp2UGMEzKmY1sc3FGOm2lU9dcASLb3+iLskX4/vIpo2v5ykYvuAh
30T9gju29MhUVVBQfv3SZxerAiyqVlQ5cpyCtunyhJ28BSiW5s1CLQrGGlp1
tRd/RsXl48Jb5Cm4FFK2cEj0M6plBt/m4aVgE5+/7ua2fNyR1N1hXUdGjo+5
ppX++Xgu9h3v9i9kVDMdtvNQyseb2c5pTzPImBytF9j/KA9vmAnvIgSQsUd+
U9TFyBx82xC66/M/ZDzi9l9eFeMjptbpJ++RIWNmbiNx37GPGLjphI0xPxl9
1CK3La3/gONlg5x3qCTcflj4VZJ3Fu5cNJzZ94SEgQG3a9Z3ZWLkLW16sDcJ
x6s7qM6qmcj0LeS55kDCsqPP5A9NvcUlQeqdXBUS2piJF/RdyUCFZDG34KZh
nJid17pTm45nVWVuTeUN472nrci/Ox2TFHRKsxOGMbkvsElv9BVyRdIZ09bD
qOBnbdZn/ApbXLMkHGAYS6XUuz3epaF5oyVtTmoYC5qIhNNtKaisCtseVw9h
h2BIW2DsSzwsMFiI/kM4a6E1UHg2GT1eKyplaQ/hweHUuR1dz9FRpjeoN3MQ
zXaf5Tj9LBHf5lTK5lkN4k3njZsDLZ+hY/Pfoef4BjF3zlWW3huPXl+PZpba
DWCLltSBHclx+C1DYfUz5wBO+bVrm9rEIiPg7smh1/24pTbE+IFkDHoIFcin
6/SjpbBHxjV8gvqvDKoNf/Ths+Te0ha9SNzQ5ls5aN2HXXJ67Wq1EdjSXiV6
ltSLf+W/YyQZh2Hiahq/unUvnj3Ev35dw0MsraHF5DT9xFiCh5jTySDM2nhc
1FDxJ/443afc3ByACv9FRTy634OSBUHRjmn38IbWscr4om58UX8GD77xwrGl
mGPE9i78e0BiajXLHXcMGZwnEDpxP6VT66mNC/LYD6X+49mBcptvPlNycsDC
9uN/OvOIGNCxt2NHjQn+PcI6vDWiFRUEBpy5FNXA6IbUFTGnBuhiBqYKLlhC
iCff91P322Dm9B7WDXdHEB5u8v2c3Q5344wbXdRuQp3z9y4v+U5Y9fN5kXrg
DmTTKcoD57ogwPmDa7u8L7xb/pXqe7IbOM8P6XLL+YOqBnfxkmQP1EiFh74U
DITb8y9/TPf0QPBTmZsaUcHQaWFge9X/JxhvLrNs4wuFxP/Ip11Ee4E70ELP
JTwc8kZVn9HSeqH+99Q+Lu7HQHDrkF+U6oMItzDh1OAosBR6QtJJ7IO3zOj7
4g+iIba/+Pcsdz84Ock7flmNBeKveo2wjn44JuN1KUg3HgQMt/89cHAA9g7U
mJ65lwAikcbiWY8HgGFuo8FYfAZ21vkfrqsNQuOW7P1Fms+h1mq9umzQILyv
/7Uz2CsJlohb5htbBsH1cPQmyflkeF/L1TltMwQmi/0rDNUUqOI/xtfzagiU
CvYxi9xTYUFz+tcjyhAsxJMm9i6kwVxQ8gtv5WEo4b3bWX0nHYZozT+j0och
TVGkPVcmA0yTFXd/rRyGkDO5P5JbM8Bke8ebnQPDcO4ppclz31soUeGfImwl
wYz0qWr5gUw4dSU4LMSHBN2Go7gtIgti1+tGx8aQoMIpoHyDRjbodhzNlcgi
waOPBcWD0e9BQ2DCs76LBHJaErmxhjlQ/voa648CGTZbF33wZ+ZAQ0ZiQ5we
GWb9zLJdU3KhsijgcosFGezJ1eay9/KgvDYzGu6TQWnvb5M/nflw/7DvVad6
MjR8tjPMDy+A1cXJshUzCugQFGr2DBeAbPpBAbnLFMjrWtRLUS8ETRF5he3u
FHi6GAePKIVgYfy79loMBa5Cvfa/ukUwGG46TmimALtRWUWMWQJXR/I2hR0e
gX/I6yQfWCJceW4e57KRCkpfLzCVsxCEXhC9VIWoIBf7sXZ4EcEspNyLuoMK
fK8+/JNmUgmK5hZneVSosHLGsp89VQl8OT7Zly5RYSAvdx+qVMOIr2mNWxYV
Um/a1uoW1ULqbR6G3qFRSLbmyUkYqgU+VsgYxWAUEo8VPJvkJoBYmmyS96lR
iJbidXlpSYDbtTwEX5tRCPhRKPRnkQCy30Z4aH6j4KC8xa5Mpw6IBGJjII6C
7EzponZ1A6z2Su8q16TBvWaD4LnJBngSVLEh6QgNurKb+HPEGoHTl9vM9RgN
Iv7tk5W+1QiGy2feMy/QYKZ3yYRbqglG/hGuCPSkQQVB63X7/e9gNmts351P
g0svik64arXCjiYO1pI0HY6n/2w2tSRC09ENL8In6DDzMMeR4EYEeSlZuhWL
DonXgtiHgojgbqbZtHeBDnRFRZV9OUQ4F3U44BPnGIQVB8RzbmiHhxyFPSHb
x6C+eY9VcW47qIlRXXSOjsHRhTt0ae5OmA49v03y5RgYmQhzzhd2w2H3UN0A
HQZEOfAwFxu64Y34KH3iCAN67nAMrQ50g7FOSdJ5IwY4p0x93bSxB6bvpctK
m675043u4ud7IOTfWKM4uzU/Johs8KsH2Lf9Hkw/WPO75qpi1XthSFI2P72W
AU/sugOUi/ph5WKUBeqPQ52pxJYzwmtdkwZtkzUnYFJaxI+YRAHOq/FF5pyT
cMdjv8MT0VH4ejL8S8qXSejuFzR3rKeD30qjG8FpCux9dGjcp8bBw7roXCZ7
Cmr2a0TUcE0B7XrdgT2J0yDHU0bPODYDAThv5MY/AxJlLkZcYUw4ISHrGn1y
BjiW1me5k1mw8cBORcGIGfhtVm5L2D0HjR9K/HSrZqBPzW7H7uB5EH/so726
OAM3LwgKyfT/gs4E7qbfSkwQix+x3CCxAO3zfXsP2DIhxyrt3az3IhToe6mr
P2HCBV3/Y/XlS2BcTNgrXcqEfFs3Ge2VZTCp2S+bOMKEBV4DzhKLP/ByIEGG
JcAC87ZD6hKJq5DU2u++rM4C3kN8VWUvV2H3/dDWtxosqMroPWmdvgrqBzdu
NddkgbK3j8OLnFXImU4zzdRiAf/OosdihFXoc1d9flaHBQ2uBykirFUQfb4S
+EaPBUc27YvmP8UG0wcEkvopFizcWtieY8aGuJDSvUNrnNtX98bkAhvqo0Iv
hJqwQDLXsfTxZTYI/Kx07TZlwYpFxiivDxva22I8Pc1YUJS+U5f7LRt8Hrry
551nwfUt03Vv37NB5NblrvMXWCDnVWFunM+GG1eyQv6scfwJm2sPy9hAf3Ys
7cRFFrgzk+I429mwUyC1mGLFAnkrZ8n0HjYYbZ+pCbdmAalWK0t/kA2a+i1F
B2xYcCaxp+LBGBv2fDx98a4tCzatzzwuPb3mN6zjlrZjAbp4dVTOscG3wPbl
tzX27DS2s19igxrRTdzVngX/27vwv70L/wcJcx4q
       "]]},
     Annotation[#, "Charting`Private`Tag$121731#5"]& ]}, {}, {}},
  AspectRatio->1,
  Axes->{True, True},
  AxesLabel->{
    FormBox[
     TagBox["x", HoldForm], TraditionalForm], 
    FormBox["y", TraditionalForm]},
  AxesOrigin->{0., 0.},
  DisplayFunction->Identity,
  Epilog->{
    PointSize[Medium], 
    GrayLevel[0], 
    PointBox[{1, 1}]},
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-2, 2}, {-2, 2}},
  PlotRangeClipping->True,
  PlotRangePadding->{{0, 0}, {0, 0}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.748001670114634*^9, {3.7480017279918118`*^9, 3.748001745195683*^9}, 
   3.7480017857472277`*^9, 3.748019089746763*^9},
 CellLabel->"Out[75]=",ExpressionUUID->"d16000c0-32ab-478a-9bf9-bfdcdc994e0b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[{
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"Sqrt", "[", 
      RowBox[{
       RowBox[{"x", "^", "2"}], "+", "1"}], "]"}], ",", 
     RowBox[{
      RowBox[{"-", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"x", "^", "2"}], "+", "2"}], ")"}]}], "/", 
      RowBox[{"(", 
       RowBox[{"2", "x"}], ")"}]}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", 
     RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}], "\[IndentingNewLine]", 
 RowBox[{"N", "[", 
  RowBox[{"Reduce", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"Sqrt", "[", 
      RowBox[{
       RowBox[{"x", "^", "2"}], "+", "1"}], "]"}], "\[GreaterEqual]", 
     RowBox[{
      RowBox[{"-", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"x", "^", "2"}], "+", "2"}], ")"}]}], "/", 
      RowBox[{"(", 
       RowBox[{"2", "x"}], ")"}]}]}], ",", "x"}], "]"}], 
  "]"}], "\[IndentingNewLine]", 
 RowBox[{"NumberLinePlot", "[", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"Sqrt", "[", 
      RowBox[{
       RowBox[{"x", "^", "2"}], "+", "1"}], "]"}], "\[GreaterEqual]", 
     RowBox[{
      RowBox[{"-", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"x", "^", "2"}], "+", "2"}], ")"}]}], "/", 
      RowBox[{"(", 
       RowBox[{"2", "x"}], ")"}]}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", 
     RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]}], "Input",
 CellChangeTimes->{{3.7480191455329027`*^9, 3.748019154563141*^9}, {
   3.748019277239435*^9, 3.7480192892214727`*^9}, {3.748019324447011*^9, 
   3.748019360008919*^9}, {3.7480197933553333`*^9, 3.7480198605976763`*^9}, {
   3.748019892707294*^9, 3.7480199139508247`*^9}, 3.748020820636813*^9},
 CellLabel->
  "In[110]:=",ExpressionUUID->"4ba90644-9ab6-4cf3-85f0-b61ebcb76b1c"],

Cell[BoxData[
 GraphicsBox[{{{{}, {}, 
     TagBox[
      {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], 
       Opacity[1.], LineBox[CompressedData["
1:eJw113k0VWv4B3BTxpNpH2NJSkoZKmkQ93lNSUmG6MolGbq6KWNSVNelJN0y
ZCahFIrbIaHynowZMoWSISGz2uccBxny27+1fr8/9trr88fe79r7+T7Pu14V
V28bDz4eHp5R6vrf+5XRI+yVFYIZpPnQ2sODjkaCZbk9SwTzouNLjpUrHVlK
fpl7+ZNgJmbeTdE/SUfr9/kse3MI5lflpFnCgY4qb8UKD4wQzNxW07FKCzoS
1vq4jvmeYI4xVopUdtHRvQCXw3+nEszhLTFLg3x0lM/r/5BnD8F8Su/8EPCA
QKs8zHYqOEkzFSv7so81SiPiU41XVowUs+2osfErAWlkU5Xipt4gycz2aNO9
YCSFgn8YeEUPSTDN9HbmmPhIotKLKX8VHhVn7jrku+DhIIEsY+3W/0qmMeP3
hsYJFK1GZulvLA9OiTKviTk7KsvSUE7dpS5/RxHmP3UBCZ8TRJFz+D2ZlidC
zADavvnCn8Loqgt/gRghyDx0cvzCi8tCiEdTGRtfF2Ba7x6edhQURJ+jkiPy
O/mY5vbTMQmBAmitqGfujBEvU9+GoxMkyI/O6m5d1bN2BW+VWGuncZUXue3p
f1JVtYg7bV+NM1fxoK1BeivnH85jf3cG761Ty5DZZ1t9yZCLx4ohuCFlAUZD
ZfTN5Nl4mKOVFLh5Hsrjt5iO2U/jRZSwQ+QFF4QdR9149acxQ3X9qZl8Ltiv
z/lHUWUae0qmKw1ncYGdt5FpMTmF1axcjrVFc0GduW7/82tTmPlR1nHIiwtJ
E/Qdl59M4js0BmdiExcuAK8SbWEc52UVjDJSZ2D7ePeMdvoI5pVaFxWdyIEA
UlNdLnwEG6QJHLSL5kDpXKjTr79GsMog8adyJAcMBbfWNu0dwVeZMUNVlzlg
s/Fy4pmOb1hq6rerls4cuOCkqJct9g2jZ88jvdU4UN524prs5SHsbm5hSHvF
hl+fCoqWXYaw0mLIhshiNhgN8I0Nmw3h+OEADVoBGxq/51kVyQxhX1G/DtVM
NvSKLapYPR/E4lqgnhnBhhXT1OrIsa/YpBLFNdqxwaS8R2TZfgDv6XutLzPH
goK8R/vq9g/gNl2z8+MkC+RTvc/ErB/AX+mnO2omWNA1Jxh7uOMLNueouyT2
s2BTsL1k+kI/9npi5nq/lgWVoVwaMuvD57/q+RsnsSDBNdKrQ7IPdz9uH7wf
y4IzxkpNnp97sZNs/2r+f1kguco0KuZcL+4s6Xj5LZQFJ2/eExmK68HGpKWp
jBcLlu7oCN4Y6MaP+6xvqxqxoNW7zkMxrxsvB1qlSBiwINvKsabAvxvLRVmP
8e9lwSHpsPCPgt04aO6bu7AWC5Lj2/nUNT/hR+eGKkMVWbA7zXel8VIXNva7
L2XAJcEnt3BeiviAp3+LPEVjkLBd/HyY0UA73qP2jt+ngASWn4a4/7N2XLkk
f7s3jwQ//dyNHWaU5To9WrNJuNCSZZkQ0oZdUvp6NiaQwJnYZq7b1IIvlu/J
uhpCQkDxE+eE0y2YtGCA/yUSZq9sCpjjacF+SjsUfQNJmJdUzijTbcZfnC+k
3PQhYWm3NNcgowmzS4VsN3uQIBg2/+CAXz0WOnWtfbMVCREWF0oe0+pxp8mu
64wjJAjLshuFH7/DSFWWeeAwCaK5k7MNPXU4rNb2S9QBEiRa+i2OmtbifbM7
90QakBCd5Oj635caHGiileGynwRp108XpS7X4Nub3xYa7iOBzm3L+lBQjWMF
67rX65Igv6Zm/rh8FY54l/nSVpOE5GFD8TJGJe7fIN0YtI0ExYKKjYpHKnF4
dkn2Y3USlAxLLXtD3+IV31fPN6iRYNxsb/62C+MosfmkO8okHDhlFRAmhrHh
6gotvnUkHJwxzzBFFbj26cGsa2tJsFA04NbnvsYf9hRrJimQYH96Y2Z7SBl+
OOygjOgk3PL1vxn7ohTf32shIUKQ8Cakytvm+0s8pm10p0eKBNU4t9/aT5bg
dP0Yw3QJEn6/X7QpNukF1lOZvnRbnISoXP7VNm3FWFbVxvz6ahLYOLunzagI
yyxcL44TI0GtkVMZE8zAfxLttrmiJDh0GedZFz/H5qUqMe9ESGBODQW1bfoP
ux6hTW0UJmHsx5/MDW8KMEckneYiRMJRQeG7WVrP8IHWtW2PBElYp3NQI0sq
D/N/kj9suYqE6+ZjCyphTzBPNS//cwESpk7erM+cycHiPxluSpRtA7ckqZx+
hKWT9pyP4yeh/Pa705kfs7GeZ+RGgrJKtqeuinkW3tUcHZ7GR8LNMmGBzPIH
eKZKNVabcn+G9SPD3+9j5TbRI028JDxrijEy3J+KJQTmXvhRDv7Z9gWtS8J+
k1HvN1A2V5O+gnjj8e3oE/d6eUiQs7VRRMMxmPAbFH1AuXFF1fvanX/xk2sx
O85R9nR4lHv1WATmyFQLm1AWKNo0fEUxFDsvVkerUkYKFgYLzAvYy+l9vThl
MinZnZXsihnNAsV8lE9t6dV08+95lZd1d4KHslaKWx19tzfUKpqlCVHuV3j+
XUwiBOJFzVPkKdvqfHp9wzAcvut4mutQLuk+/k9E8C3YqRiQe5zyaubkxuoT
0VCVs7X8OmWIy79RfTEO3LbtDX5D2ff02fHqewmg7rFn6hflrH3bLGqeJ4P8
389ph6jv76BNFtQ0p4HdmnW99ykLDuRJ1U5mwPKRIYdlymkOunpu4ZmQ9NTu
ugf1f3WN488OSWeD+tFSp4+UmzW4aW6ZD6Hvo/6gDVUfHp4XK24VjyGWf83U
aaqeyeP0HcMWueAz+Lf3CuWdHwJc3XvyoGG7SmomlQf3nF017vPPYL/M2RE+
Kj/Ld+/NDt8oBK/oBP5Kyo36C3GMW//BK0ee6ltU3tzVTtTsVGDAgGjXln1U
PrevEe33G2BA4pBewzoqv8sS5bOMx0VgItUqLE4jIeGnwhad3S9gdLbSXoTK
f11T9y0d21L4npPN5y9N1TPoc53jtjLIeDlRj6l+ElbtEQjnL4ey+KQWORkS
DgX3Xu0oegXbp5pujcuR0KT+xe8CHUO7r4YXQfWvV+eXwvQpDNJi/e1lVH/f
QD6zrq5MkOYuOJ9VIWHzlI9OlN5b0K443v1DlVrP2O9Zz0QlnFWS/XFFg4S9
yezGH/ZVkCq6S/GKFrX+D78J/qoq4A88bhGxnYTcFP/NGqnV4H2ULH69i4QJ
VkBmyOFaiGtqVMqn5pnXg4vxSk/rIXimG8Vak6A/O1e0Q74BZjyV3sAxEmgW
Qe2m4Q2AkhJm5uypfpgLkjj/RyPcPPHs2s0/SPhueTmygvYe8gf1vdQ9SSi9
WlFRuLsV1h4eTfAIJeFB7q/3ZV6tMDi1U/l1ONVvHb/1VWW1gkmy+Sqlm9R8
2YoXP4q3QZiQW9vyHRJ+duK9PKNtIFy/qlgvnQQ9zbcMq8QPECn6z/vUV1R+
OroSKuo/gKzDp04rTNUveOqyxtIHOJrfHCFeRc2fejlj4VMdILfVoy27gQTC
4/wHvLUTIs/8stf9TM2LtDUzWhVd0Mx2Y31fICGDFqi7+ls38CVm6MZQ+2NK
UZRCsNxncO6YLThqRu2/JzKXx8w/A19qmpisBQtuP2mqqS74DPI+JcfK7VgQ
ZLLRPiSoB17uSznvcoYFNiGtgZNifRDpZLC4ltqv+QJlet0VBqAsZ/enLeMs
OOGS1166awB6rc/JWv9gAeMQ1NOsBoCl+jg9lMsCV+UzJcU3BqD/6pT7Ii8b
Kt+9jhaYGQAlOYdRqzVsCFvjbvqw+SuIZ9JMQo6yQeAto2AobAgSZTv4kt+w
QYhmFer6fQR2qJGPFQs58PvmE8zdIqPQ4uS0PF3CgTwj9xVR1VHw9hq1q6vg
gOWloCtFDqPAn/CCE9XMgYSRB5cEakZh8Kbhmj++c0DtLcs3J3UMds0emZXS
ngHTwDjXiYMTwFdGE3pYPANhA13GftnTIK5vYDzfzIX/Um9YXWWzYNmqGOmK
zYN3lrvksD0XrPtH88bzF8D5rxSliNB5oFu0hJmbLEOkdeA+nbRF2PDA+Q80
vgIC9PiRawu/wN9f12n0PC/62HidDJfgRRLap5O7P/Ihu2DX3SlVfMinQTRh
1kMAeYlNbmg+IYAYU7yq7f2rkHJ+bYLgxCqUt05/fMsxIRRcamwrkSqEXPru
rc6bEkY+OV4lu7VFqHPDXOwzL1FE49vjqvVNFFkU3GixkqAh03PH4rfG0VBr
60yB79PVSL5MydtUVRylLPX9OKctgWL9bsZs/yiBvFz5T5v8JYlsbhzVTC+R
RMKKzV2+2lJoq2O43cMrUsg0KvCcAUsKdY2IZMXZSaP9md+NFqukUbPrN0Np
ZQLd/kpmCkUS6KvA4/n4DQS6P01YBN0m0EyOZ6GCGoEePVtaGrtLIIXJybUq
mgQa4Jfyb0ggkLs/e057P4E6878W/vuQQAthK8+OHCeQp6DkGRkmgdQeKShG
Us9tSIl4qz5HoH1mPa20OAKxlR4ZpC4QyGI8LSKaes9guSKT9otAvprruYnp
BBrazPvphwAdvX6h1pqTTyCjzJO2JdJ0ZFOrc6O6jkDtX6IvmGjRkYcnV/9g
I4HsCvPtSnbQUZDoS05jM4EKdCf3b9Glo3RLvVMfOgnU0d2oSNOno7EupD84
RKAHiq9VOszpaCGIj+MxSqAMjUc7Dxyho9VrqnPHJ6jvkEoxL7Wio50nzeRY
LAIl0lIj047TkSmvSHMAl0DTvJkMcUc6+j27IXx+nkAVt3K+/u1MR3+Z3t4f
skSgHWlPZDmn6Oj/zpfo/8+X/wNv8g+J
        "]]},
      Annotation[#, "Charting`Private`Tag$129636#1"]& ], 
     TagBox[
      {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], 
       Opacity[1.], LineBox[CompressedData["
1:eJwV1nk8VO8XB/AZjGwVJntZk0hRifqi50FIZSmh8o2iEkmEfLO0oFIhZYl2
qSxZK5TUmYg2JXuyZ6cI496Zsczv/v66r/c/9/Xcez7nPEfN48SuwwI0Gk2N
TqP9/xkxaDvJ5zNZY3P82LQ0Bh4Ik51um2Wy9txJGS1OYWA7yS6ylMtkPZn0
dqtPZGDVTf5zJ6aYLEz/c048noErrtwQ6R5gsiwTAsrORDKwyJoWZdZXJsu8
YnyB9zEGTgo6sP3cbSZLeLB7p60pAz+lBz6iGTFZ++c/djn3CGHGYet1Cvul
WVI15v+uUxLCzB9Vvg+vS7FyKzl1w56CeFflLU/tz5IsJy+7iCXPBHDYuKlv
Qu9i1ks5yaqEKTp+GXLLp8B+EYvTPL7UbQsd291wUp1Pk2BN9SvrNV2mYeu7
b+y2/hZjLXY02OmRx0dPPpxuDnQVZfl/8yBeeM0jt+gkmdqsBSzxU4+Fa6Tm
0JkDgvniTGGW8y5BdmjXDKKtVgGLC0Ksn69nJRQreOjn1bRLT5sEWMkH/U0D
0rloqdjRbLY5neUouirSOo+D3N7WxKqb0Fm+e+OyD2VzUPrJtf4OG+isn7fC
l0c/5qAVbTzDXC06a+VRJdXPdzlILzfuvacEnbVVjhFxMp6DzO2ed9U30ViK
rO87jfw5yPvGvEzRURrL9sDt6CcbOCjXypPbeZDGapUxb2au46Ax3od2CVca
K/zv/o6oNRx00vN6xlFbGiutOF7BV4uDwg2Wr1VdR2P1pW/N2a/AQcp5ianK
JB8OpIpt+ThHomMbdBhtS/ngXWvt1PSRRCcZrzJPLeZDuYTQvoIqEoU2WW+T
FuBDiLbJidgKEl0JPnzNZnAefoYvbrMvJ1FO8QOFl0XzMGS9W3u2gETDG+TW
JFvNg4qsMx67SSIvQyEXe/85WNs21+vsQyI/4UTuiMccdDVoGt/2ItGpZrU7
F53mYGnmQ/3eQyS6eAr1vPlnDnQ6z4qdcSfRk5LQY7qMOfB+sXBB924S9RtO
nBW9NQtb36bn7sUk8jTqzKqsnAGCzaRtUyTRkSwjZ6vSGYjUu0pbL08iH4Xr
gp9yZuDL093vVGRJ5D9j4fbt+gyYTZinCkmTKByyma3uM+Bx3El3VpRESdbB
Z8ZmeLA5m56YySPQzZffVgWM8yB3nYxkLYdAt7RXtk794sHVLT4ZPIJAD8Tb
1nM/8WDoeImG2xSB8mrxsGAqDxQ0N692+U2gaheJ3QoGPAg6HX9btotAnz4e
pt/R4kHNJh+zyA4C1WyCfGUlHkT1LHCbbCNQvdJJ0eUCPLinYC7T/YNAXV0t
b9d854LtlbB1k/UE+uWw1reokguWpm1bIusINPDuioJBKRc2epYIyH0n0O8M
06BN97jAElx7x+4rgTheGdpbfLkgLHtYhPxAoJkfs83V7ly4mn5yY141geZt
nKNtHLkQEkDbcbSKQEK6ol12/3BBti3znz8VBJL665e0V4QLUgb3hNa/JdCS
gx/N2mc4oPWlUlnqDYHk69XG3cY58CBj1oX9mkDKLxptDjVz4MKRa1afXxFI
579/+H6POPBvEHf8RTGBWB12Or0pHEhVUVTNekEgZwtPJ5fLHPB4P5We/pxA
kYtinyI/Dlxq6XifWUS9P+hB8/MDHAi9uybsRSGB8ltf0Fc6csAy/lXehwIC
tT7qcJHcyAGzlYzn9HwC+YlNRkbrcED2ePXtlXnU9/gL53OWckD9bqWucy6B
9I31hHroHOhbfSGoKodAMXXnCou+kFAmt619OpM6v1Fym+ZbEhKWeVg7Un5x
J1v4ViEJsS/PlZY+IVC3V/2/kckkCHxf35L8mECnvg5cIi6R4MfffH8xZYn1
M898QklI+bz5bsIjAhnNa4g6upPAqjU/npVB1dtzo8GHnSQc0c3Ygyh7fNrh
bryFhBxmUW7HQ6peaw5eKTAkwWn00KkoyvFJwcUa2iTsDGiq0Ke8nHe5+6YS
CWlLNt7vTydQmfs9cYlFJHjZ98g/pOxQ9czwHI2EVAFL0yOUB3Q+HGRPEuBW
Tyisoxye0BZ7tJ8Ao+iccgZlaWK8tL2FAC03g/U9DwiU5SrU6/CZAPdLl6++
p7z5nfyiqnICNHxYDQWUG1es3rSpgABlOSnFDMo+sWaH8tIJkM9p8r1HmTbp
dE0tiQCZwis/0yknu/iUJV8koDe+NiCPss6bM/2ipwnQHDti9o4ySz1R8swx
AmrVjPZ0UHaOyTSe3E+AQcq2Kjp1vt9/Xh854kBAgun3m2soRzp+v/7TnAAd
vlKXJ2X5V33ldhsIWLwyMyedcr4yd7BCiwDXDkmxIcpbohcyjRQJME1QXmhE
/b+fw2qbn0oQcCOwvDKesr+9obcKfxrMpuZMxykLF29LSpyYhu2rlWP3UPW5
regOC/qmIc333NvPlPXPBY6ENU/D3ceF/ZZUfav7L8n8/TgNr9ie0p8pTxYW
HvuRNw0zUlz4Q+UhRrYqZceDaQj3lfOMo/KjHN76jnVjGhr56xwMqXxtsxaQ
zw6Zhq0OL+0eZVH5ypW1WOYzDfTL5VHe2VS+pFf5Xf93Gghxts1GKq/pHY7v
T5tNwwonrYbJpwRa17eO12gwDV3MvcXfqHy/H5HS1185DUa6L3SfU/kfIGtv
DyyahnZuuXwK1S8h8/l1ZgLT4Et/nptE9ZMII37B3Wk23Bv0XHKH6jcd6R2B
ju1sUO/Svl9F9eNr+VXZ+bVsMDMu+zVI9esOFbEu0Uo26HFn/2GWUP2m+3Eb
K5sNJc7WvhdeEuiZ1Rb11SFs2Jf+LK+Vmg8Wthp7YnzYsFwvKsAKqPw4CsT3
7meDVf79hnIWgYgDLG7aFjZoS70pq64kkHGYSZ2wNBsUT5+W3fmZ6pfzSgs8
GGyI7/D6KlFDILcYnskbzhTkxdqX1lPz7Vzyy6zArinImBoKiKDm4fsCg3Pd
uVNw2sAm36GVQE4lzBLjB1PQql+idYCarwPlk6MpiVNwu5YWHErNX5HPhS62
oVPAr77YVdtDINs+Xb0y6ynQ/tpkRxslUOeI+GEZ4ykw/GTMOvqHysvEyC3/
NVOQm/Trefs4gW7MZwlryUyBoGhQxCCbQM3ymp2JvyaBZ3hT6yqfQF4qQkvG
mybBOmqP0S4BEnE0e222fZqEsNT8i5oMEimuTy+mFU5CMO2q9YQYidxsl8Ud
j5iEIRkBBVU5Eg2elzGxlp8Ef4EXSpNrSSQWUTCeKDYJRRV/6po3kGjNfzYZ
3bMTMB1Z1f9lE3Wf+kWIhfZMgJXvx/JBMxIJu/b/yM2ZgMen2W4ju0ik43w2
lntnAoQ2jG5wdiGR3U4FbHVtAtrsIzMaXEmUbG2b2RU4ATtS8ZDgYRItNygO
ljadALPFSeWb/yPRVj17bXe9CTj3rHjYOIJEvjrD7U/VJkBjXaDwjkgSvVBd
tsVSeAKyOu9VPY4lkcXCC9L/1f6F/d5uYVsekshjYHdBx8G/sOC3Sc3eOuq+
7xnz0Nn9F1K82el3Wqh9oj1GNsTqL5SVpF6Z7iDRZH15hOSqvyB9fmnwyAiJ
BM7apF4cGofzDN/ZAQYHobXDdTsXjoO/wb6f7piDLmot2zQ6MQavB6NrVLZy
0LdlOx9EN4+BaFhRIdee2s/EXvmV3h+DmNSMw7Pu1H7UGyO+bN0YrNyBXCzP
c1BZ8krLIec/8COpIUDrEweJuA560k3+AFrxoji8noOcVZ9EKqr9gaUqLQ/H
2zhoMkeDtWP0N5Au/Eq9cQ7SZikbF539DXI204HqclyUOrJkbWjWKDyNNHdV
Pc5FAwUN9olxo3Crpfbx6f+4yCD4hl/uyVFIKbd2I6K4qJa/OLfTZBTy+V3l
rre5SFhGXMuibgTedBuI/PrCRcGIvkyCNwyXIpY7mhnwUIUQy1izaxg8v+hZ
CpvzkOTnM/s2vx8GeTwkQNjzUO7u2Zv+8cOwcDkx5+LLQ33epHST+jC87ly1
aUMmD+1K+iNyb/sQbKOTA82aM+jB3lytUv0hMD8u0RZrOIPGlI9ZfZcZgiZg
aYdYz6Ar2UNRAt2D8Cx09Nao9wx697Z3/kjQIPR6r2r1KppB+sOtbL27AyCy
7cm+vdtnUdDf1dpy0QPwsiI80d5tFr0kz++f9xmAfTn6tmcCZpGZsE51zcYB
GGWycUzqLNqlEXrTu7EflDWbfnoOz6Lg/Yr/ZIj3w7VUj7NTKXOo7JCf35XJ
PmiXOyrWkDeH5o9VPAxo7YNvpprvOO/n0MVQH3Gc2Qdvrs0VKrLnUOrNsvZ2
8z7ghQxmNznNo7K6fWdlQ3vhp5GDhPpKPpr/kf987kAv0ENClAct+Mi8W2Co
z7oXNnLE6oQO8NGXsRyH5zK9EHBHMN4+jY/axWfUHIp+waD3iIqmCA3zLW+/
vzzUA/ww+7KUGBreYjvO8a/tgaV/j+9OTaPhmN0Wq/eU9MCsUY1gQw4NS3qO
Jq+I7oGDvWUh5FcaVj9n7FWp0gP1h7Sr5OXoeEtZm+icczeksTyLiorpOD/n
8aYPxt3Q3a/0La6GjuVvn/C+rtoNbOH8mIpeOm4mhW9sb+yClRExEyZMAawZ
5ix5l9cJ/Oh2wZxTApjjOnJi7ftOsA38te5sggCuMTlTWxXXCcu/3rpQniOA
g+Yfx4+pdoL944Ne/3UL4Irz0xLYugPYI598DHcK4hSPy76Nkh3weebd/Tg/
Qextsazm6M922Ld6t8uBWEEsybC8ev14O/RLXvGM+iSI3WOSRHsT2+BrQaOt
9DYhPBu/XvhidyvUL2+OMfJi4O8nPhxWzGmFgCXmO6viGDjDwbUqP7AVFmmU
RgkXM/A26ajoFuFW6Enc51/MEMZpyfUC2qt/QKcC87hdoTD2PXXE4w3RAiIl
0Qn8dmGMXXjvdrJaIH0kRC5ObAEeklc/H+rYAho3CG+nowuw4Z0A/pfTzfD9
eN9tBz0RLBbBcD9g0QxfX02RqZ4iuGN/2lu2RDO4FoevYaeK4GiVdxHLHjRB
cSbtpuACUdzwUHLWr7oR5M7MdoRNiOInUY9cBRMawUKr+L6dnhgOPbTx9c29
jXD+uJLxGT8xrL7iQCjrdwNwxXKzVCfEsH92AUeK2QAeu+p/VYtIYP1FflHm
3fWwd5Fjw09bCTxxUndRYF499IZ+7wlJksAnTbI1Gq3roWV/VsK5FQtxcO1D
u5TwOgju3rjd0X0RNjQ42FptUwe95fm/1j9bhIlUlUOkbB2YpFXpLlmwGId4
3Dm9p+g76BhatC0tXYynRlbZbKiphQ/BR91wmiQOepHllnKkFqSDLv6u+iKJ
iQjNIJJWC5ons5npfEnMkVS5/2rDN9hnMygaf0wKzxpKT5ver4Ezyf3B/U7S
OIJ2Tez+phoYVY+7WpIkjec/iavSGr/AeoFAuluTNKbvZ2yvEPkCky7R45H/
MrFwFOeB1clP4GJSf6Qoegm+tCO4JFPiE/zo363zunEJFpGd/CKS+RGGtwt2
H9aSwWLZo8Tntg8g/G1TxPImGXz15FEJ3VMfwJjcbnZeXxZLmPSrxUl+gK3S
1UukrsnixbWdO+wtq8Hul6riaWc5nJDq6lHYVQVfvtU2F4Iclvb4ESIVWgUd
thN2bbryeMl03cOG/PfgEx+/aYKpgOWVqjgu8pWwYK+VX9xSJZzWZ7bo1bMK
2Gey90hhrhJWzH+roWhbAZL/phRpWizFy8xe2rWffwf1z1clQfQyfE9swyHT
pe/gpm1+Z6u+MlZpLDp9r4QFmSbf7A36lbHFN2ebd80A6daPGhIMVLHVQYeg
KHGADHnZMIm7qngr2+a+JX4L0v22bxaJq+EdiqbTn7LL4XIAF0Vw1bBdnqFq
bOdrcEy6xCRC1fFOrL/djvkaMp6EJUsLaWDnIxrp9eGvoFtSJFNKfzm+EhAY
c6P4JVz1E1WyrluO34RXntg1VgrVD8JnGRGa+O8lpou0VimMSa1xcjNYgTNK
NT1raKWwRn2UKbFvBf4fwc99lQ==
        "]], LineBox[CompressedData["
1:eJwV1Xk0VV8bB3DDvYlIujKEiJIIZcpQPadkaJKkkp9SokGiNBlCSiKSEpWh
IklSKqJS9qZSxiZEMs8z173n3HtN73n/2uuz9lnr7LWf7/PsxW4+Dh4iQkJC
84SFhP6/ZstlrjcpL4S/DuVb30ao437NpsLJqA8QmKxuy5RUx1G/mnhL3D8C
uD4L5kYsxpXLW3zPyiJgDW/duPuuGvaqbclJGUTwUd0m89FyNRxOnCTd3DCo
BfqaHwxVxcsGTxpGmRdD1d8bIq8mVTBv/diOBxnFcCBqYe8xWxX87c6pk7nz
S+Do8V1aj5KV8VFL3+eN/SWwZROzfbuLEja9x64Y2f0JKt9NF6HShXj2iG+/
6KdPMDmrnpmxeiF+mnh62Yqkz6AbLZgHOoo4YHTcihD7AvyQ2y3mzxXwZusz
7o6nv0BIpPnNtUYKuH/sTOqFLaVgMDtqpaG9PH5vw0WxBaWgYPcpKLVTDl9L
OducrvEVnkps85EMksM6m84pVU18hVNx9RlC7xZgr4fn41Wyy0Ct0umbpZMs
XkNSuasUymH+QsvivWKyWHKr3y+rsHIwHXy2QOYdCz+n/KS9XSog742KRo8G
Cw/bBUQWSVaBSmj7VV3Z+bgoXfDkl18VGCcefGZRK4NjBAGl3Z1VcKhdT0vl
rgzWzwgUlf5YDVifqymlIYPfBhcV5Zj8gJUj9wyKtszDD59OV73z+gHd/t7v
AxXn4YiadU2f0n6AbujKSwt+SmMnbTTxZ+5PIETj9tbJSmN+LTIV6vkJsUc0
rowUSOF2ISFbCZVfYGRbvnPKQwqX6xB7ZHf+gm/azAMiclI4MRSf1UK/YLf6
5VUvAiWxuW7xa/s7v6HhpWtJw39zsHFNXUJR2W84m5q6/7DyHLwycDBgxeRv
EPJ2W2jZLIE1y+QtZx+sgc8y1uNfPCQwy8P7N9KuhfXVKbGcS+J4rmRYge6+
WgjSf5slsk0cS+TeS0q6UQsrDsQ0KimIYyHhL4fOc2rBuiwOObyajQeTlTh6
RXUwpNFpIj8ihnssV9Unj9bBiuTOPIzFcHu/9QcJjT8gkuAysj5ODDeY+oZ1
X/0Djn8ih96Yi+HSmm+y93fUw5qWM3p1t2bhB5LnjKW6GuDsCT9LCXcmTsyN
UgyU/ws9aQem+AQTJzinTvVu+gsrHUR2XVjExNGZlV8+v/gL/aEbWnUaGdhv
o8buC36NEPwt71WrMwOfHjA1789qBH5E1sDcNQzsfctukVNTI/y+0qP0VoWB
PVr9uw03/AOZSFG5U+2i2OHCj3MDc5rA4p+Hk9kpUbxNo9t577om2Pv0dppg
lyi2LZ9Y9/VkEzS1rZReYiGK1yksE3tU2wQ5Aj/pJ7NEsU5e0B3nB82waSyt
wyRNBIucW/DPXbEVgonwqpE+Yex8IOvXW6NWGNygXxn5Sxi/3gxlkvat8PK2
X1pQoTB2Uz2WnxfeCosil7YcjxHGJd8+xDI4rbC7WsXOyFQYX1Zyt0qvbgMb
f3u+RqIQ/sfkW/D62qD1NrHw4VUhbDR63WArsx3kr9mj/WeFcOfnAlWORTus
Flzru79DCG/0niOwfNoOKzyLrs6REsKM4tcvOi53wJ+NjR4HVWaQyzObx6sf
dECb7mXr7JlplBf/LynqfQdomCcfdGmfRu6esyINxzrA8NDF0q7MafSF5Xzo
8v5OCElZlXPKfBqFHxZW0DDrAk+47aPjPYWa7RPmnnfsgjIHzyb53VPIxEKH
WeHTBZr+AYo7102hbuldbN+MLrj+PMXhlfQUsn6XWVnC6oap3X5Hh95MIjFJ
+1C34W54e2fgcYD0JHJa5oxNxHsge/lkht7kBMra4D4jsaQHjg9YcBb1TSA7
f7+g3L09YDzZb/jq0wRK6H7oz/jSAxU73+8ND5xAmsVjpzKSegEHsIW3cwXI
79/Ey4D8Xth1a1v0iS4BKqeYo3Y/e+GEldTQh1oB8tZb6E3N6oNM0wsfB/IF
KD9pg6etbx/4vto05RcoQFbn4tz6bfthTyeXUSspQAk3U1KLDvWDpVi/z4cZ
PurNftJ6K7gfzpqZkxVsPoruKNxvkdcPhUEepw428FGNfadztOoAPP1cumNv
Jh+56xjv1CMH4EMqOam0jY/yreGWiMwg3FLUXGq/gY9mu236WaczCAWbdNMf
r+aj7Lv7toccHAT92NgVuep8xGGGb/lROQhL/Vxc7AQ8dLm1ztL30RDE25lq
meXwUPO7LSf8PgzB8qUtqmMZPGQehxOCa4dgffyzgOL7PDRqldV3TWwYtk3X
eWTF8ND+Z0E3Hh0fhjVq1nEJPvT355Y01hiOQF6PSUmGMQ8lbL/HaNw6Ao+6
q3vK9HhoTGuuXpvHCHh6ZZLCWjyU2UhdHLozAhHR+8VfLuQhufUVmrMmR0BQ
FvtmWoiH+Eyzd0puo1BhVpS+9ieFMnzHq+57j0JTqMrmexUUcmx53r44cBQS
ggghsVIKvXyrLql1m3aa8YR8IYUOH5d0NSodhWiLLVVzMihU86OFsU17DCzS
yo4rhlDo0tpExR8mYyB2XqHrcgCFVmY56u20HAMRrQULps9SKOpy2Z69LmMg
R66SWXyCQhtMcrM8YsbgwkDTHxUX+n9J4fbB7DG4p6RQVLeGQhWs8B5pITbk
HWKONZtSqDvqSnCqFBsS2CnbKCMKKV8Iy/6sxYbVcZ3sPboUinC5NHuOKxtK
PxXOrV1EoUc1oQ+Svdigeb0v21mJQkVbQ030AtigIZ+0b0SeQpw1F913xLNh
/Q1/XysZCh1QCcZ3KthgyL7R/pBBocD4oD3LG9jQrhJ7LUmYQglSQcPvu9nQ
qxVonT5NosqpQOVm4XHo0fMPbeGRyLTZ32+J6TjwWBHl/CESzXtwduWr9HHQ
d6zvSf9LIh35s183vB6Haa7WntP1JLK+cWZ/DRoH1cdpynZ1JLoQcjqa+jsO
3VHdG7V+kajX9VTvWhkOPP56YZdXOYlE60+GfF/EgcOuo0WJ30i0yP6k3MEV
HLjjLV1YU0oiR8JnY5gNBx6edp97/BOJsNqJh+VBHNAy9Elf9JFEjXe9VrtE
cWCPZdiSJ4UkIud5VQ/d5cDRlvjL5u9JtEL4+OS8PA6oxOpHhhaQyMbfMy6t
mAOMsstM43wSuY0d0zb6zoH2Y8clx/NIdLftqNOefg5syu88EvOaRLl7j470
UhzYKTUed/wViap/HgkPYHLhTmU03+EliRglh/NS1LhQlh6vTrwgkU+a+7zO
3VyIinD6fjOLRDH+95JjDnGBeXDz0cqnJHphX61ldpILQZXEYWnaw9Or18dE
csF61dSuF09INLfOq8o0gQtLJwO0JWjrPk/d25HGhfurvJZ7Z5DI6785vqYf
uJDqFHPC7jGJog2I6fZvXLASv5JQnk6ibPGz167XcmFhu/8rO9qVrU/lTNu5
cEs29eXfRyQaKGhOax/mwrmXduHetCVusPSvT3BB2ZZcIkFb+7Bt4erZJPyI
1w55nkaizWuDbNplSTivnnLViban7Ovf0YtJODGksmoO7WsD3a6r9Ui4siDJ
+0sqibJKlAbbzEkwu6xmeJV2+T17v2gbEibj/pyyp9138gpjtSMJuaWzFi2m
Pdv2fWzbARLgmIwO/yGJtFRHlKNPkLDE5nx0PW1bUuOpSQAJtntrjBHto1VO
xm3hJBSca134nHZE+vXiqDj6fLN89NNoZwaWbDN5SIL7a+8j92l/c6AaWrNJ
mK3Ul59Ku2f5isNR70gIihaZn017lvBBtnEpCRZ5fK+PtDXr44Nbf5EwtGfZ
h1ra1jnlElEtJCyXmh7n0D4cPpNgPEiCJltcXIk+f/g+I41WHgkOR0ZHbGhn
GB3Lucak4F+ZT0og7dI59y2M51OwQN91Vj7trvZfX1sWUVCq9kKVos14L+Z4
TYcCa2f35nX0fS65uabVyJSCuPDU1ddpu0MGL3IHBd5Rj2PW0vUJk2sMM9pP
QdXixecf0E4fkpZp8aTgQGb0dzG63h1J/suNwihguNzNGKAtcvrFm+ZYCviN
afOO0HlR39yxPjKFgkn/U8W9tN14W52b8ynIeab2fZrO16Xvod0Rnyioe6Ko
EEfnLy0j39fwBwUDamIXdTNJ1OaoFhXRR8Gw958rZ+j8Hng1XmigzAN/5xP7
NmeT6GKElm2TFg/OP064Ofc5iR667qu5asyD/R5jd+tpt0h9Hfxnx4Md879P
BuWQaL9nosrVUB5cmNm5SCqXRBMN4tVj13lg749UBbTvbvIPdknkQekb3XOD
dH/+1HJqWZXLgwOqvcJtdP9u7FmQ+q+TBxqf9Qpm0/3fuvvKDpsxHshVJVxS
/UCioFKO8OspHmi6b3K3oOdF/uPfblfl+PAQ79l6CZFoufvNJQa2fMgp+du8
5TNdr99CtcmOfJjPHoq69oW+H8uTV8QO8kHR2kW2mp5Hyerbu//580HHtT3x
UBndr22SmVef8UGv5eP7r9Uk4uyL0GmaKwDVgA8O3vR8jK2iGm2UBFCTqhZE
NdL9vPZI9OtlAijpWC9/pYnOk7L10FVCAFmh10Oft5Ko4a9ojoGvACK+JF00
6CFR0Z4Qg4haAYxo1raKcUkUueOcmWHyBPCpp0vfsih0q1LbK/vpBNR5/M0Y
XUChZJuW+0sLJsC8nxWtq0C/P2ttGQq/JsC0RuVYnjKF6pcv/D4pNgnCjikf
uUsppCVS5F56ehI2DjScX29GodLXzNi9W6YgJKe6sMaNQgzZ+O4QwTR4Lltb
8xVTaP5w8Nz5YjOQ3r+touAThRZ/O2qSzpqB3Y8qzmfR7+u6C2vCv62YgZ6b
7I47lRTy7+xYKuM6A9wKxxe36ik0nGfgkfZpBuTSvGyYYxQa1O495WYtRMiH
2R8v0+ChPxVXRsOkhQmLvmRZw1ge2hXoZpL4SYRgl6arDsTzkdecAfVqZwZR
HGxw5Em6AKk+K02Y1c8kXJqGg+yLJ1DgW8ud0klihPL5r2wDsSl0MsMr30Rf
nCiuVKratXEaSYqsdtPrkiASpbko8skMsjrhGK8dJ0mwo/dv4IQLYYV3Kj5W
S+YSbh0KmbmrhPEt34ibK/9IE1EOt8O0hoWxQ/h23ZT8eYRhQfFoyUMRrP1f
2K70IBki0SoqV8hBFNd1i6fF7ZpPGPz34PshWQaudutaP1+VRWxX2igTXMHA
bYwnvHh1FmEWyFLIrWZgTsbRHEVNFpGr+cWi9ycDKw4MKC/WZRHaf280ONQz
sPtpNqVvwSLW3Jp9YnkXAwsuzzzftodF6Pc2djVOM7DmY8WFkTdYxP2Mydxd
BkxsZtP4QzKOReT80zSLMWbirX3JV2MTWIRW4taGUlMmPqWrxr2TwiL6nth7
mgITf3ij+SPjGYuIsHhSpbyViR1KDcM/f2UR/ltkrvd7MLHHUe4a2woWUdGw
pnDJMSb2kygYr6im98Muirp6MXGKnfnB37Us4lKuQvtvXyburSPWtHewiLy1
EnVFIUws8BMZ9+hhER16Z37zLzGxlNLnp339LCLGMqLfKJyJDVxt5MfGWMSb
W34ez6KZ2EpYvPoMl0V8KTEr677BxE6PysN4PBZxVNjHWj2OiT2toi0uTLKI
xW0STfsSmDioZxt7ZoZFDE/NRN+7x8T/A/CH94c=
        "]]},
      Annotation[#, 
       "Charting`Private`Tag$129636#2"]& ], {}}, {{}, {}, {}, {}}}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-5, 5}, {-9.267031097123823, 11.175873396351644`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.748019155498466*^9, 3.748019290134891*^9, {3.748019327356045*^9, 
   3.74801936070551*^9}, {3.748019797701099*^9, 3.748019823909079*^9}, 
   3.748019864831148*^9, 3.748019914460273*^9, 3.748020822177538*^9},
 CellLabel->
  "Out[110]=",ExpressionUUID->"20118310-3c21-46be-900d-7a6562ba70ce"],

Cell[BoxData[
 RowBox[{
  RowBox[{"x", "\[LessEqual]", 
   RowBox[{"-", "1.074569931823542`"}]}], "||", 
  RowBox[{"x", ">", "0.`"}]}]], "Output",
 CellChangeTimes->{
  3.748019155498466*^9, 3.748019290134891*^9, {3.748019327356045*^9, 
   3.74801936070551*^9}, {3.748019797701099*^9, 3.748019823909079*^9}, 
   3.748019864831148*^9, 3.748019914460273*^9, 3.7480208221829844`*^9},
 CellLabel->
  "Out[111]=",ExpressionUUID->"bbcc3203-5664-4717-95ec-9a261c508c99"],

Cell[BoxData[
 GraphicsBox[
  {RGBColor[0.368417, 0.506779, 0.709798], PointSize[Medium], 
   AbsoluteThickness[1.6], {{PointBox[{-1.074569931823542, 1}], 
     {Arrowheads[0.04], 
      ArrowBox[NCache[{{Root[-4 + 3 #^4& , 1, 0], 1}, 
         Scaled[{-0.08, 0}, {-5., 1}]}, {{-1.074569931823542, 1}, 
         Scaled[{-0.08, 0}, {-5., 1}]}]]}}, {PointBox[{0., 1}], 
     {Arrowheads[0.04], ArrowBox[{{0, 1}, Scaled[{0.08, 0}, {5., 1}]}]}}, {
     {PointSize[0.013], PointBox[{0, 1}]}, 
     {GrayLevel[1], PointSize[0.0117], PointBox[{0, 1}]}}}},
  AspectRatio->NCache[Rational[1, 10]/GoldenRatio, 0.06180339887498948],
  Axes->{True, False},
  AxesLabel->{None},
  AxesOrigin->{Automatic, Automatic},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  ImagePadding->All,
  PlotRange->{{-5., 5.}, {0, 1}},
  PlotRangePadding->{{
     Scaled[0.1], 
     Scaled[0.1]}, {0, 1}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.748019155498466*^9, 3.748019290134891*^9, {3.748019327356045*^9, 
   3.74801936070551*^9}, {3.748019797701099*^9, 3.748019823909079*^9}, 
   3.748019864831148*^9, 3.748019914460273*^9, 3.7480208222147207`*^9},
 CellLabel->
  "Out[112]=",ExpressionUUID->"61108524-5bec-4d7d-b0b2-ce6e98474351"]
}, Open  ]]
},
WindowSize->{3200, 1689},
WindowMargins->{{0, Automatic}, {0, Automatic}},
Magnification->2.,
FrontEndVersion->"11.3 for Linux x86 (64-bit) (March 6, 2018)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 2062, 53, 236, "Input",ExpressionUUID->"d4d6c06a-ec80-4fd5-9bb4-e3998fd3c00e"],
Cell[2645, 77, 2259, 43, 955, "Output",ExpressionUUID->"af4c1dcb-dbeb-443b-8868-42225e1278e1"]
}, Open  ]],
Cell[CellGroupData[{
Cell[4941, 125, 2194, 59, 236, "Input",ExpressionUUID->"61d12b13-2c2a-468b-a54e-0735016bc78d"],
Cell[7138, 186, 2428, 47, 989, "Output",ExpressionUUID->"57f158f0-5b7b-4b09-91cd-95f78b2670a9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[9603, 238, 2000, 55, 236, "Input",ExpressionUUID->"c5d93e08-3c79-40a6-8e38-9921dba6f939"],
Cell[11606, 295, 17212, 313, 793, "Output",ExpressionUUID->"d16000c0-32ab-478a-9bf9-bfdcdc994e0b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[28855, 613, 1798, 55, 189, "Input",ExpressionUUID->"4ba90644-9ab6-4cf3-85f0-b61ebcb76b1c"],
Cell[30656, 670, 18638, 327, 546, "Output",ExpressionUUID->"20118310-3c21-46be-900d-7a6562ba70ce"],
Cell[49297, 999, 463, 10, 102, "Output",ExpressionUUID->"bbcc3203-5664-4717-95ec-9a261c508c99"],
Cell[49763, 1011, 1254, 27, 142, "Output",ExpressionUUID->"61108524-5bec-4d7d-b0b2-ce6e98474351"]
}, Open  ]]
}
]
*)