NMR MOLECULAR RECOGNITION STUDIES ON NATURAL EXTRACTS FROM EDIBLE PLANTS

Identification of Bioactive Compounds / Nutraceuticals

STD (Saturation Transfer Difference) and **transferred NOESY** exps FOOD as "Drug": Functional Foods Prevention through Diet

NMR-BASED IDENTIFICATION OF Aβ LIGANDS IN GREEN AND ROASTED COFFEE EXTRACTS

CGAS PRESENT IN GREEN AND ROASTED COFFEE BIND Aβ OLIGOMERS

NMR CHARACTERIZATION OF 5-CQA BINDING TO $\ensuremath{\mathsf{A}\beta}$ OLIGOMERS

5-CQA AND COFFEE EXTRACTS INHIBIT Aβ PEPTIDE AGGREGATION AND Aβ-INDUCED NEUROTOXICITY

Citotoxicity assay in human SH-SY5Y neuroblastoma cells

+ bA 10 uM

RCES CONTAIN ANOTHER ANTI-AMYLOIDOGENIC SPECIES: MELANOIDINS

COFFEE EXTRACTS AND MELANOIDINS COUNTERACT OXIDATIVE STRESS AND MODULATE SOME AUTOPHAGIC PATHWAY

Coffee extracts and melanoidins prevent H₂O₂ and rotenone induced citotoxicity

Coffee extracts and melanoidins modulate LC3 and lamp2A mRNA levels

IDENTIFICATION OF LIGANDS AND INHIBITORS OF $A\beta 1-42$ oligomerization in Hop extracts

¹H NMR spectra of 15 mg of the extract in boiling water of four hop varieties. All the samples were dissolved in deuterated PBS, pH 7.5, 25°C.

Palmioli A., Bertuzzi S., De Luigi A., Colombo L., La Ferla B., Salmona M., De Noni I., Airoldi C., 2019, 83, 76-86

... TRYING TO DEMONSTRATE THE HEALING ACTIVITY OF IMPERATORIA EXTRACTS...

Imperatoria (*Peucedanum* ostruthium) is a medicinal plant traditionally employed in Austria and Italy.

Palmioli A., Bertuzzi S., De Luigi A., Colombo L., La Ferla B., Salmona M., De Noni I., Airoldi C., Bioorg. Chem, **2019**, 83, 76-86

Imperatoria extracts from leaves and rhizome show a significant content of polyphenols, among which chlorogenic acids (CGAs)

Palmioli A., Bertuzzi S., De Luigi A., Colombo L., La Ferla B., Salmona M., De Noni I., Airoldi C., **2019**, 83, 76-86

... WE DISCOVERED THEIR ANTI-AMYLOIDOGENIC ACTIVITY...

12

1 nm

DI-SUBSTITUTED CGAs are the A β Ligands showing the highest affinity

- Di-substituted CQAs are the best ligands of Aβ1-42 oligomers, as they showed relative STD intensities higher than mono-substituted CQAs and thus higher affinities for the target.
 - Also glycosylated flavonoids and furanocoumarins bind Aβ1-42 oligomers.
 - The co-presence of these compounds in the same extract allows obtaining a significant biological activity.

Hop Extracts Anti-amyloidogenic Activity: Prevention of $A\beta$ -induced Citotoxicity

boiling water extracts phenol-enriched extracts

Hop extract effect on the viability of neuronal cells treated with $A\beta$ 1-42 protein of increasing concentrations.

Comparison between boiling water hop extracts and hop phenol-enriched extracts.

All extracts protect cell against Aβ oligomers-induced citotoxicity

Extract enrichment (XAD-4 or flash chromatography) in polyphenols compounds increases the biological activity

Hop Extracts Anti-amyloidogenic Activity: Inhibition of $A\beta$ oligomerization

Molecular recognition of Hop extract with $A\beta 1-42$ peptide

1) 1H NMR spectrum of the 20 mg of the AcOEt extract of *Hop tettnang*; 2) 1H NMR spectrum of the mixture containing A β 1-42 (160 uM) and 20 mg of the AcOEt extract of *Hop tettnang*; D) STD-NMR spectrum of this mixture at 2s saturation time All the samples were dissolved in deuterated PBS, pH 7.5, 25 °C.

Molecular recognition of Hop extract with $A\beta 1-42$ peptide

A) 600 MHz 2D-NOESY of 20 mg AcOEt extract of Hop, with a mixing time of 0.9 s. B) trNOESY of the mixture containing A β 1-42 (160 uM) and 20 mg of AcOEt extract of Hop, with a mixing time 0.3 s. Both samples were dissolved in deuterated PBS, at pH 7.5 and 25°C. Positive cross-peak are in blue; negative, in red. C) STD NMR spectrum of the mixture containing A β 1-42 (80 uM) and 15 mg of AcOEt extract of Hop

EXPERIMENTS BASED ON COMPLEX OBSERVATION – RESOLUTION OF PROTEIN 3D-STRUCTURE

¹H Spectra of Proteins

EFFICIENT RELAXATION RESULTS IN BROAD LINES: THE EFFECT OF INCREASING CORRELATION TIMES

¹H Spectra of Proteins : Which info can we obtain?

BACKBONE ASSIGNMENT – 3D EXPERIMENTS

BACKBONE ASSIGNMENT – 3D EXPERIMENTS

BACKBONE ASSIGNMENT – 3D EXPERIMENTS

SIDE CHAIN ASSIGNMENT STRATEGIES

Identification of backbone protons:

¹⁵N, ¹³C, ¹H HNCO SPECTRA

¹⁵N and ¹³C labelling are required

Magnetisation is passed from ¹H to ¹⁵N and then selectively to the carbonyl ¹³C via the ¹⁵N^{H_13}CO Jcoupling. Magnetisation is then passed back via ¹⁵N to ¹H for detection. The chemical shift is evolved on all three nuclei resulting in a three-dimensional spectrum.

This is the most sensitive triple-resonance experiment. In addition to the backbone CO-N-HN correlations, Asn and Gln side-chain correlations are also visible. It is mainly used to obtain CO chemical shifts which can be used in a program like <u>TALOS</u> to helppredict secondary structure. The HNCO can also be useful for backbone assignment in conjunction with the HN(CA)CO, if the CBCANNH and CBCA(CO)NNH spectra are of bad quality.

¹⁵N, ¹³C, ¹H HN(CA)CO SPECTRA

¹⁵N and ¹³C labelling are required

and CBCA(CO)NNH spectra are of bad

quality.

The magnetisation is transferred from ¹H to ¹⁵N and then via the N-C α J-coupling to the ¹³C α . From there it is transferred to the ¹³CO via the ¹³C α -¹³CO J-coupling. For detection the magnetisation is transferred back the same way: from ¹³CO to ¹³C α , ¹⁵N and finally ¹H. The chemical shift is only evolved on ¹H, ¹⁵N and ¹³CO and not on the ¹³C α . The result is a three-dimensional spectrum. Because the amide nitrogen is coupled both to the C α of its own residue and that of the preceding residue, both these transfers occur and transfer to both ¹³CO nuclei occurs. Thus for each NH group, two carbonyl groups are observed in the spectrum. But because the coupling between N_i and C α _i is stronger than that between N_i and C α _{i-1}, the H_i-N_i-CO_i peak generally ends up being more intense than the H_i-N_i-CO_{i-1} peak.

An overlay of the HNCO and HN(A)CO spectra makes it very easy to distinguish between CO_i and CO_{i-1} for each NH group.

¹⁵N, ¹H NOESY-HSQC SPECTRA

¹⁵N labelling is required

To start with, magnetisation is exchanged between all hydrogens using the NOE. Then the magnetisation is transferred to neighbouring ¹⁵N nuclei and back to ¹H for detection.

This spectrum can be used to obtain restraint for structure calculations. In this case the NOESY mixing time should probably be around 80ms. It can also be used to help assignment, and for small to medium-sized proteins, assignment using this and 15N-TOCSY-HSQC only is possible. In this case it may be useful to use a slightly longer NOESY mixing time.

Wt extracellulari

Assigned number	Metabolite	chemical shift (ppm) ^a
1	NAD	9.33 (s) 9.15 (d) 8.83 (d) 8.42 (s) 8.19 (m) 6.13 (d) 6.08 (d) 6.02 (d)
2	AMP derivate	8.6 (s) 8.17 (s)
3	UDP derivate	7.95 (d)
4	Histidine	7.8 (s) 7.05 (s) 3.96 (dd) 3.22 (dd) 3.12 (dd)
5	Phenylalanine	7.42 (m) 7.36 (m) 7.32 (d) 3.97 (dd) 3.29 (dd) 3.12 (dd)
6	Tyrosine	7.18 (d) 6.89 (d) 3.97 dd 3.13 (dd) 3.02 (dd)
7	Trehalose	5.18 (d) 3.85 (m) 3.75 (dd) 3.64 (dd) 3.44 (t)
8	Lactate	4,11 (dd) 1.32 (d)
9	Serine	3.94 (m) 3.83 (dd)
10	Glycerol	3.77 (m) 3.65 (dd) 3.55 (dd)
11	Glycerophosphocholine	4.31 (m) 3.6 (dd) 3.22 (s)
12	Lysine	3.7 (m) 3.00 1.87 (m) (t) 1.71 (m) 1.45 (m)
13	Citrate	2.64 (d) 2.52 (d)
14	Succinate	2.39 (s)
15	Glutamate	3.74 (dd) 2.34 (dt) 2.05 (m)
16	Alanine	1.47 (d)
17	Valine	1.03 (d) 0.98 (d)
18	Isoleucine	1.00 (d) 0.94 (t)
19	Formate	8.44 (s)
20	Uracil	7.53 (d) 5.79 (d)
21	Fumarate	6.5 (s)
22	Uracil-6-carboxylate	6.18 (s)
23	Thiamine derivate	5.46 (s)
24	Pyruvate	2.36 (s)
25	Methionine	2.63 (t) 2.12 (s)
26	Acetate	1.91 (s)
27	Ethanol	3.65 (q) 1.71 (t)
28	Aspartate	3.88 (dd) 2.80 (dd)
29	Leucine	3.71 (m) 1.69 (m) 0.95 (t)
30	Glucose	5.22 (d) 4.64 (d) 3.89 (dd) 3.83 (m) 3.73 (m) 3.52 (dd) 3.46 (m) 3.40 (td) 3.23 (dd)
31	Threonine	1.31 (d) 4.24 (m)
32	Phenylacetate	3.52 (s) 7.38 (m) 7.30 (m)
33	Glutathione ox	3.30 ppm (dd) 2.96 ppm (dd)

^a chemichal shifs are referred to DSS and multiplicities showed in brackets. Abbreviation: (s) singlet, (d) doublet, (t) triplet, (m) multiplet, (dd) double doublet, (td) triple doublet.

BUDDING YEAST METABOLIC PROFILING WORKING ON INTACT CELLS

Luca Brambilla

Paola Coccetti

Manuscript in preparation

CLINICAL METABOLOMICS STUDIES

NMR metabolic profiling performed on **biofluids from patients**:

- <u>Serum</u> collaboration with Prof. Stefano Aliberti (UNIMI and Policlinico) – Project VIBRO project VIBRO (12/2014-12/2017): Ruolo della colonizzazione ed infezione virale sulle riacutizzazioni ed ospedalizzazioni in pazienti affetti da bronchiectasie
- <u>Urine</u> collaboration with Prof. Stefano Aliberti (UNIMI and Policlinico)
- <u>EBC</u> (Exhaled Breath Condensate) collaboration with Prof. Jan Stolk, Leiden University Medical Center
- <u>BALf</u> (Broncho Alveolar Lavage fluid) collaboration with Prof. Iadarola and Meloni, UNIPV and San Matteo Hospital) - Fondazione CARIPLO, project 2013-0820 (3/2014-12/2016): BALf metabolomics in chronic lung rejection: an innovative approach to identify predictive markers and sub-phenotypes.

Airoldi C., Ciaramelli C., Fumagalli M., Bussei R., Mazzoni V., Viglio S., Iadarola P., Stolk J., 1H-NMR to explore the metabolome of exhaled breath condensate in α 1-antitrypsin deficient patients: a pilot study, J. Prot. Res., **2016**, 10.1021/acs.jproteome.6b00648

¹H-NMR TO EVALUATE THE METABOLOME OF BRONCHOALVEOLAR LAVAGE FLUID (BALF) IN BRONCHIOLITIS OBLITERANS SYNDROME (BOS)

Discrimination of different pathological stages through BALf sample metabolic profiling

Ciaramelli C., Fumagalli M., Viglio S., Bardoni A. M., Piloni D., Meloni F., Iadarola P., Airoldi C., J. Proteome Res., **2017**, 16, 4, 1669-1682

PLS-DA Analysis

Cluster Analysis S vs BOS 0p vs BOS I

Cluster Analysis S vs BOS I

Spettroscopia NMR nella scienza degli alimenti e della nutrizione

Applicazioni relative alla caratterizzazione di matrici alimentari, alla loro lavorazione e alla loro stabilità

- Struttura e Funzione
- Compositione
- Qualità e sicurezza degli alimenti
- Identificazione di composti bioattivi tramite STD-NMR

