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SLAM - Introduction

AUTONOMOUS ROBOTS NEED

o To localize itself
e.g., GPS give us the coordinate

@ To build the environment map
e.g., know the plant of a building

— without any prior information
— in real time

WHAT 1s SLAM?

@ Simultaneous
o Localization
e And

@ Mapping
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Let's start from ...

TwWO COMMON PROBLEMS

In mobile robotics, but not solely mobile robotics!

LOCALIZATION MAPPING
o Given a map of the environment @ Given the robot position
@ Given sensor measurements @ Given sensor measurements

e.g. images from cameras,

laser range finder scans, ...

o Estimate the robot position @ Build the map of the environment
i ;*%
L "
2 e ”
Ees
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Localization

LOCALIZATION - A SIMULATED EXAMPLE

Video localization.flv

@ The position of the coloured box is known (i.e. the map is known)
@ The robot sense and distinguish the map elements

Video from http://www.youtube.com/watch?v=MELYZ5r5V1c o/
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Mapping

MAPPING - A SIMULATED EXAMPLE

Video mapping.flv

@ The map is initially unknown (gray window)
@ The map is incrementally builded by measurements

Video from http://www.youtube.com/watch?v=ZfqLnZSAhZw 1o
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What happens in the real world?

KNOWLEDGE OF THE MAP KNOWLEDGE OF THE POSITION
@ Impossible in a lot of applications o Usually unavailable or noisy/uncertain
e.g.: exploration of buildings, e.g.: lack of GPS signal in indoor, ...
underwater operations, ... . . X
@ Thus, mapping is not applicable

@ Thus, localization is not applicable

SLAM - Simultaneous Localization And Mapping

@ The holy grail of the robotics, but not solely mobile robotics!

o Mapping requires localization < localization requires map
@ Answer to this question:

“Is it possible for a mobile robot to be placed in an
unknown /ocation in an unknow environment and for the
robot to incrementally build a consistent map of this
environment while simultaneously determining its location

within this map?”
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SLAM

ROBOT PATH AND MAP ARE BOTH UNKNOWN

Robot path error correlates errors in the map
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On-line and Full SLAM

ON-LINE SLAM FuLL SLAM p(xi:t, m|z1:¢, U1:t)

p(xe, m|zv.e, un.e) @ x1.:: entire path or trajectory

@ Xx;: pose at time t o m: map (static)

@ m: map (static) @ zi.;: measurements

@ Zz1.+: measurements @ w1 controls

@ uy.¢: controls

On-line: estimate the current pose

Most online-SLAM are incremental,

they discard zy.¢+—1, U1:¢—1
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EKF-SLAM Introduction

EKF-SLAM

@ Use a EKF as engine for the solution of SLAM problem

@ The earliest and perhaps most influential SLAM algorithm

@ Map is static and feature based, i.e., composed of points, m = {pﬁW)}
@ For computational reason number of points small, e.g. < 1000
@ All noises are assumed to be Gaussian

@ Needs of relatively small uncertainty to reduce linearization effects

EKF-SLAM STATE

@ [x¢, m]: both pose and map are in the state

@ Motion model: only the robot moves, features are static
@ Map is initially empty
@ Map grows when new landmarks are perceived

@ Measures are sensor readings of map landmarks

Updates refine current robot pose and map structure simultaneously
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EKF State Details

STATE

@ x; = [x,y,0]" robot complete pose in world reference frame T%)

o m=[p", pM™) pM pM) . pM 0T cartesian coordinates of points

in world reference frame

_ . 2 xx ZX (W) > (W) > (W) x> (W) 1
X Py Xpy Xp3 XPn
p pu pu > p
pW) o) W) Zpwy L) w) o{W)p(¥)
T
p" o Tww Twmw) Tw ) T W) w)
X = ng) p— 5 5 1 T 5 " 5 " o
<o) (Wplw) W) (W) (W) (W) p{M)p(W)
pl’ by X 7 by )y
L n -
o) Wpw) 2w w) (Wp(W) Bl |
Z_ Z;(—X me
Zim  Zmm
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EKF-SLAM Algorithm
0O0@0000000000000000

Prediction Step - Robot motion

STATE PREDICTION

[X;r7 mT]T = g(xf*h ug, m, 6)

Xe+1 = cos(0:)&x — sin(0:) Ay + x:
Ye+1 = sin(0:)Ax + cos(0:)Ay + y:
Ocs1 = 6.+ A0

(w) _ W)

T T (Re) t+1
(w (W) Ry
Py1 "e41 Py ¢ 4

. I

’ ‘ 1

p>(<nW)t+l pE(nW)t U~ !
Py py”) Y
Yn  t+1 Yn t Tiv?{

@ Motion is the standard motion in 2D

@ Map points are static,
i.e., the prediction left them unchanged

@ € = [ex, €y, €0] ~ N(0,X)

i.e., noise is only on motion
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Prediction Step - Robot motion - Jacobians - 1

STATE PREDICTION - JACOBIANS WRT STATE

[erv mT]T = g(xt*h Us, m, E)
G, = fetramo)

X=fhy_1,U=Ut,M=Lme=0

Omlxume)  Ogluume Om(ume) Ombwme) Oglcume) | Og(cum.e)
Ox oy o6 apq‘/) BP,(vgv) ap(yzv)
Omlume)  Ogm(ume Oplume)  Ombume)  Opbuume | Og(im.e)
TR R R R ol
Og(xume)  Og(xume)  Ogylxume) Ogylxume)  Ogalxume) . Ogalxume)
Ox oy o0 apir/) Bp%‘/) BPE/,,W)
1 0 —sin(6)Ax—cos(6)ay O 0 0
0 1 cos(0)Ax—sin(0)Ay 0 0 0
|00 L 0 0 O [Guowen O] _ f few#0
00 0 0 0 0 | diagonal =1
0 O 0 0 0
0 0 0 0 0 1
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Prediction Step - Robot motion - Jacobians - 2

STATE PREDICTION - JACOBIANS WRT NOISE
cos(d) —sin(f) O
sin(f)  cos(d) O
_ O0g(x,u,m,e) o 0 0 1
N, = 28loume) :

¢ X=py_1,U=Ut,M=[im,e=0 0 0

_ N motion;
N 0
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Prediction Step - Robot motion - Jacobians - 2

STATE PREDICTION - JACOBIANS WRT NOISE
cos(d) —sin(f) O
sin(f)  cos(d) O
_ O0g(x,u,m,e) o 0 0 1
N, = 28loume) :

¢ X=py_1,U=Ut,M=[im,e=0 0 0

_ N motion;
N 0

PREDICTION STEP

e = g(1,_1,ue,0)
ft - Gtztflc;r Jr NthNtT =

— Gmotionr 0 Zxx 2xm ;ot[ont 0 Nmotiont T
B [ 0 I:| |:Z;-m me:| |: 0 | + 0 R: [Nmotiont 0}

T T
— [G motion; zxx G motion; + N motion; Rt N motion; G motion; zxm:|

T T
me motion; me

= Only top-left block and two band are changed, most remains unchanged

this allow to speed up computation = O(n)
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Initial state

EKF STATE
e o =1[0,0,0]
0 0 O 1
@eXo=1(0 0 O A
0 0 O
@ Robot is in the origin T >

@ No uncertainty on its initial position and
orientation

@ Trajectory and map are reconstructed up to a

rototranslation

@ The map is empty at initial step 2 g B : 2 .
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The sensor

THE SENSOR

@ Measure points in polar coordinates

i.e., p, 0 values

@ w.r.t. robot reference frame
@ It recognize the ID of the landmark

o i.e., Landmarks uniquely identifiable ) .»
o Correspondences are known
o No data association issues

@ Physical limits:
e Min and max distance
o Min and max angle ! : ! i i ;
o Additive zero mean noise on measures

both for distance and angle
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New Feature Addition - 1

SENSOR MEASUREMENT

@ Suppose the point i is perceived and is not
currently in the map
@ pj, 0;i: the point in polar coordinate,
perceived by the sensor
o p\® = [picos(0)), pisin(0))]
“INVERSE” MEASUREMENT
)

° P/ TWR P,R
CONSIDER NOISE

o 0= [np,m0]" ~N(0,%,)

® pi=pi+tnp

o 0i=0;+ny

oﬁ”:mmwo@mmn

° S TWR p,

'UZ
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New Feature Addition - 2

CURRENT STATE

X=[x p™ .. p ]

INCREASE THE STATE DIMENSION
w w w

X = [x pg ). p(n ) Pgew)]

ASSIGN THE PROPER VALUES

State modification:

X = )‘-(X7 m, [pnew, eneWL 77) =

X = X
w w
" = p{"”
_ pW) = pw
p) = pi”
w W) ~(R
pla) = T R,
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New Feature Addition - 2

CURRENT STATE JACOBIANS
W) w) F=2=
X= [X P1 0 Pn } ox
[ of() () of(-) 9f(0) Of() ]
INCREASE THE STATE DIMENSION Ox o™ ap) apt™)  opl)
R 81‘1(&/)) afl(l(/&)) af}‘(/'})) 8»‘1(&»/))
= w)y . M W) % ap ap. appy OPhew
X= [X P1 Pn p"ew} o) 9H)  oB() .. 9B()  9m()
ox (") opy") op") OpSen)
ASSIGN THE PROPER VALUES
afn(') 8fn(') 8"‘n(‘) e 8Fn(') afn(')
State modification: Ox op") op0") op) opW)
Ofpi1()  Ofpi1()  Ofpya() . Ofaa(l)  Ofnia(l)
X = f(X, m, [pnew, 0new]7 77) = L ox 3P(1W) apgw) apgw) 39%) _
X = X
w w
" = p{"”
w w
_ pW) = pw)
w w
p) = pi”
w W) (R
o) = T,
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New Feature Addition - 2

CURRENT STATE JACOBIANS
w w F= 90 =
X:[x pg) o pwm ] X
[ o) () () () Ofi(-) T
INCREASE THE STATE DIMENSION ox apl™) opd™) apW) op)
wo Gy Gy . Gy 4
X = [ W pW) EIZQ] ox op op dpn OPhew
x P Pa ™ P on()  om()  9B() ... 9H()  0B()
ox (") opy") o)) apler)
ASSIGN THE PROPER VALUES
afn(') 8fn(') 8"‘n(‘) e 8Fn(') afn(')
State modification: Ox op") op0") op) opW)
0hi1()  Oher()  Ofer() . Ohani()  Ofir()
X = f(X, m, [pnew, 9!16W]7 77) = L ox 3P(1W) apgw) apgw) 39%) _
X = X — -
w)  _(w) | o0 --- 00
P1 = P
p(W) o p(vv) 0 1 0 0 0
2 - 2
= 0 | 0 o0
F =
(W) (W)
P = p
p?vv) _ TIEW) BiR) 0 00 1 0
" |22 0 0 0 o
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New Feature Addition - 3

JACOBIANS
| 0 o0
_ 9f() _
F="2x= afO 0 I 0
7"5; 0 o0
0
of (-
8fn+1(')
an

matrices are sparse
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New Feature Addition - 3

JACOBIANS
| 0 o0
_ of() _
F="2x= 8{0() I 0
7"5; 0 o0
0
of (-
N=2 =1 0
8fn+1(')
an

matrices are sparse

THE NEW STATE
o u= f(uxvﬂmv [pﬂeWa 9new]7 0)
e Y =FI*F" + NL,N’"

@ X" is the covariance with the

increased size

@ Products are simple due to sparsity
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New Feature Addition - 3

JACOBIANS
| 0 o0
_ of() _
F="2x= o 0 0 I 0
7"5i 0 o0
0 NOTES
_ of() _
N= on 0 @ A new feature is added to the state
8fn+1(')
on @ Measure uncertainty is taken into
matrices are sparse account (thanks to )
THE NEW STATE @ Robot position uncertainty is taken
into account (thanks to T{")
° lu = f(/dev /“Lm7 [pﬂeWa enewL 0) ( WR)

e Y =FI*F" + NL,N’"

@ X" is the covariance with the

increased size

@ Products are simple due to sparsity
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Qualitative example - 1

SENSOR READINGS
OBSERWATIONS at step 1: 8

251

2 L

# -

15}

1F
05k g

ot >
05 ] .

1 1 1 1 1 1 1

22/72
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Qualitative example - 2

ADDITION TO THE STATE

MAP at Step 1, features: 8, algorithm
25+

15F

05} /;
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Qualitative example - 3

PREDITION - MOTION MODEL

MAP at Step 2, features: B, algorithrm:

-
1

02t \
S

o
[=]
X}
=]
R
=
o™
o
fux)
-
(X}

02
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Measurement & Update Step - The equation

MEASUREMENT

o Measure: hij(x, m,?)
o It express what we expect from the sensor

o Given the estimate robot pose x — T(W) p
o Given a single estimated map point pl(. )
that is in the EKF state too!
o ie., p in pol di
.e., p; " In polar coordinates wrt

w
7

w

MEASUREMENT MEASUREMENT WITH NOISE

(R) (W)y—1,,(W)
o p;” =(Tyr) P ~ _ [ (RZ | (R)?
o hilx,m.6) = i =1/p} +p +6,,

p
° pi= pff) +p(R) 5f=atan2(p; P )+59,-
o 6; = atan2(p{", p{") ® 5 = [d5;,06]" ~ N (0,Q:)
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Measurement & Update Step - Jacobians

MEASUREMENT EQUATION

hi(X, m, (51) = % P’X + P’y + (Sp’

atan2(p,(- ),p,X ) + 0,

o) (T4 5
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Measurement & Update Step - Jacobians

MEASUREMENT EQUATION EKF JACOBIANS
_ Ohi(x,m,s;)
5 o H;, = =~
hi(x, m, 6;) = Vp'x ;")P'y i Z ' X =g,y p=p™),5=0
atan2(p,-y , p,X ) + dg; derivate of the measurement function
® w w) w.r.t. state variables
R W)y —1_ (W
P, =(Twe) 'P; _ Ohi(x,m,5;)
o M= 85; (w)
! x=fy_1,p=p; ,6;=0
t—1 i i

derivate of the measurement function
w.r.t. noise variables
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Measurement & Update Step - Jacobians

MEASUREMENT EQUATION EKF JACOBIANS
_ Ohi(x,m,s;)
5 o H; = =%
hi(x, m, 6;) = Vp'x ;")P'y i Z ' X =g,y p=p™),5=0
atan2(p,-y ,plx ) + dg; derivate of the measurement function
® w w) w.r.t. state variables
R W)y—1_ (W
P, =(Twe) 'P; _ Ohi(x,m,5;)
o M= 85; (w)
! x=f;_1,p=p; ,0;=0
I

derivate of the measurement function
w.r.t. noise variables

JACOBIANS
H B Oh;(X,m,é) Oh;(x,m,d) Oh;(x,m,5) . Oh;(x,m,d) . dh;(x,m,d)
i = |: Ox 5P5W) 3P§W) aP,(-W> ang) ]
Oh;(X,m,é) Oh;( xm6)
:[ax 00 --- 0 o 0...0]
p,
1 0
0 1

Very sparse, useful to speed up calculation.

26/72
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Measurement & Update Step - Measurement Details

MEASUREMENT IN ROBOT FRAME

Individually conpatible pairings

I I I I I I
o 0.5 1 [ 2 2.5

Ellipses: given by covariance
S: = H;Z:H/ + M,Q:M/

@ Innovation: z; — h;(-)

o Blue: the predicted measure, h;(+)
@ Red: the real map point in robot coordinates

° the noisy sensor measurement z;
27/72
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Measurement & Update Step - Unique Update - 1

THE MEASUREMENTS

o hi(-), zi(:), Hi, M;i(-), Qi(+)

feasible measurements and Jacobians

o How to update?

THE COMPLETE MEASUREMENTS

h (X7 ng)7 61)

(w)
o h(x,m,d) = ha(x,p;"", 02)
hm(X7 pg"W)> 6’")
od=1[6] o - or]
ohy (x,p") 51) am (e 61)
Ix 961
O (x.ps") ,52) oha(x,p8" 62)
H= ax M= 85,

Shm(x,p5") ,m) Ohm(x,p ) 5m)
Ox A0m
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Measurement & Update Step - Unique Update - 1

THE MEASUREMENTS

o hi(-), zi(:), Hi, M;i(-), Qi(+)

feasible measurements and Jacobians

o How to update?

THE COMPLETE MEASUREMENTS

h (X7 ng)7 61)

(W)
o h(x,m,d) = ha(x,p;"", 02)
hm(X7 pg"W)> 6’")
°od=1[6] & onl’
ohy (x,p") 51) am (e 61)
Ix 9d1
Oy (x,p5"),62) Oh(x,p8""),55)

dx M= 96,

w
Shm(x,p5") ,m)
Ox A0m

Ohm(x,pN ,51m)

THE UPDATE

h=[h] K hn]"
H=[H] HJ] HL]T
z= [le Zy z,ﬂ T
M, 0 0
0 M, 0
M=10 Mn1 O
0 0 M,
Q. O 0
0 Q 0
Q=1 0
Qm—l
0 0 Qm
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Measurement & Update Step - Unique Update - 2

Notice that
H;
H»

H=| :
H;
“Hn

is very sparse, it has two non zero blocks for each row

EKF-SLAM Algorithm
0000000000000 0000e0

roh(X,m3s)  8hy(X,m,s)
Ox 3ng)
Ahy(X,m,8) 0
Ox
= | ami(X,m,5)
ox 0
dh;(X,m,8)
ox 0

0

dhy(X,m,d)

Bpgw)

This is very useful for real time implementations

0--- Ohp(X,m,8)

ap™)
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EKF-SLAM, the Algorithm

Algorithm 1 SLAM:
xP = 0; PP = 0 {Map initialization}

[z, Ryl = get_measurements
[x?, PP1 = add_new _features(xf, PF, zo, Ro)
for & =1 to steps do

[XRk 1

, Q] = get_odometry

[xfie 1 Py 1] = EKF prediction(xf |, PP xz", Q)
[z, Ri] = get_measurements

Hy, = data_association(xﬁkf]. Pfl,ﬁ], Zg, Ry)

xZ, PP] = EKF_updat(:(x,ﬁkfl, Pf‘,\,f,, zi, Ry, Hy)

[xZ?, PP = addnew features(x)’, P?, zx, Ry, Hy)

end for
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© SLAM example
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SECOND STEP

HAP at Step 2, features: 12, algorithn: NEAREST NEIGHBOLR
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47" sTEP

HAP at Step 47, Features: 42, algorithn: NEFREST NEIGHBOUR

T
++
s

PRI

4+
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SLAM example
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th
108™ SsTEP
" MAP at Step 109, features: 83, algorithm: NEAREST NEIGHEOUR
: S,
2. = =) =
. H H ! e
L : - s
N . . =
® B
: : : s
EEY
Bl Gk
e
L3
sk T
B
1%}
WL e
W
te v
b4
oL L
. + + 3 4
H P * K
o B 3 oo
+* ¢
: : + $ b H
2 i i L i i i I
-2 0 2 4 B 8 n 12

34/72
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0008000

th
137" STEP
" AP at Step 137, features: 97, algorithm: NERREST NEIGHEOUR
: : -
. Zi =
& ‘ £
- H
. %
N EES
E=N
H
ESY
Y
L
by
wh
o SR
H L2
Dae b ool
“ + k3 3
+ O he . i
of B 3 e
+ + I3 + ¥
+ + + 3 + :
- i i L L i i i
-2 ] 2 4 B 8 10 12
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141" sTEP - AFTER A LooP CLOSURE

WP at Step 141, features: 83, algorithn: JOINT CONPATIBILITY B & B

12
Fl & @ = W,
® = ES RS %
10 -4 = R,
* - LY - 3
- ® ® " S
v -
Bl & . %%
oo H ATy
SR 1
.
b
\Q:
¥
D J
. . . . .
: Pt : i
o B =
+ + + + +
+ + + * +
2 i L L i i i 1
-2 0 2 4 B 8 n 12
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The role of loop closure

WP st St 157, fares 57, sl ths VREST EIGHILR

UNCERTAINTY ”
@ Grows continuously also in SLAM T
@ The loop closure reduces uncertainties of ’ G
o the current robot pose A k R U R S )
o the map landmark ' L S

@ The loop closure propagates corrections A S S -
LOOP CLOSURE S (S S (A SR N
@ A landmark i that is already in the map is g o
perceived “after a while” . - C
@ Its uncertainty is lower than current, it gives a donl //'/ .
good information for localization v// T
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The role of loop closure - 2

UNCERTAINTY ON ROBOT POSE

Vehicle error in x (m)

0.5
1
Of ==
J‘I
-0.5
=1
0 20 40
Vehicle error in theta (deg)
10
5 e
T - |
- |
0 N >
\ﬁ ."
-5| T ]
-1
0 20 40

Vehicle error in y (m)

0 20 40 60
x10" sqrt(det(P))
8,
7
6 | ,'/ ‘
iy
/ v
4 / ‘
2 _,-\// ‘
0 ._-f—f’/ L
0 20 40 60
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@ Correspondences
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Correspondences

CORRESPONDENCES

@ Correspondences are known — this is uncommon in real environments

o If correspondences are unknown we have to perform the data association

DATA ASSOCIATION

o Given a set of measurements {z;},i=1:m
o Given a set of measurements prediction {h;},j =1:w
@ We have to select correspondences cj

@ Or to add measurements as new landmarks

MAHALANOBIS DISTANCE NEAREST NEIGHBOURS APPROACH
Q k=1

@ Select w such that z,, closest to hy in D*(zw, h)

© Remove z, from {z;}
Q Repeat from 2

© Incompatible measures are added as new landmarks
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Mahalanobis Distance

Correspondences
O®00000000000

GIVEN

@ Given A, B coordinates
@ Distance to (x, y)
@ Suppose to know covariance ¥

@ ie., NN(,LL =[x,y],X)

EUCLIDEAN DISTANCE

@ A s closest to x, y
e Bis far

MAHALANOBIS DISTANCE

0 D? = (x—pu) =7 (x — )

Squared distance weighted for the
inverse of covariance
D?*(A) < D*(B),

A is inside the covariance ellipse

@ It is a scaled and rotated distance
@ Same probability = same distance

e D? is distributed as a x?(n)
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Data association errors

WRONG ASSOCIATIONS = BAD RESULTS

AP st Step 166, Features: 109, algorithn: NEFREST NEIGHEOLR

12
‘ : 4
H H 44 1 4 6, igz :
10 B! 8- ° ® o bl
i . _— . . 2
o S i o .
Tz H
Tl
el . Fe
Ll H
43
o o
Fdba1
6F P L
e
i T
b o
FhEr
s Epra
e
F¥EL
2F .
T
19 25"
1 1 L e
of : o8-+
17 i 25
15 b H
%2 6 8 1 12

[Matlab: RUN1]
42/72



When data association is difficult - 1

LOow SENSOR ERROR

Correspondences
0008000000000

HIGH SENSOR ERROR

OO

©e
® e

®e

A
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When data association is difficult - 2

LOwW ODOMETRY ERROR HiGH ODOMETRY ERROR

OO OO
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When data association is difficult - 3

LOwW LANDMARK DENSITY HIGH LANDMARK DENSITY
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Nearest Neighbour Data association pitfall

MAHALANOBIS DISTANCE

JOINT COMPATIBILITY

o Evaluate Individual Compatibility
@ Evaluate Mahalanobis distance on a

/)’ subset of associations
@ To reduce computational complexity
use Branch & Bound technique
@ This performs better than Individual
Compatibility
@ This could result in wrong associations
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Joint Compatibility Branch And Bound

[Matlab: RUN2]
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JCBB)

UsiING JCBB DATA ASSOCIATION

WP at Step 166, features: 89, algerithmi JOINT CONPATIBILITY B & B
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Non-static environment - 1

PEOPLE WALKING IN THE CLOISTER

HAP at Step 168, featurest 143, algorithni NEREST NEIGHEOLR
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Non-static environment - 2

PEOPLE WALKING IN THE CLOISTER

HAP at Step 168, featurest 119, algorithni NEAREST NEIGHEOUR
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Non-static environment - 3

Correspondences
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PEOPLE WALKING IN THE CLOISTER
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[Matlab: RUN5]
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Non-static environment - 4

PEOPLE WALKING IN THE CLOISTER

JOINT COMPATIBILITY B & B
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A note on motion model

MoTION MODEL
CONSTANT VELOCITY MOTION MODEL

@ We have always used odometry as

input ® xt11 = Xt + vy cos(6:)At
@ This controls the robot motion in the ® Yer1 =yt + vesin(0:)At
prediction step 0 Orp1 = 0: + Wi At
@ Absolutely necessary? NO! O Viy1 = Ve + 1y

@ Wii1 = Wt + Nw
STEADY STATE MOTION MODEL

@ Suppose speed is constant in At
@ X1 = Xt + Mx
o e @ The noise “code” the (unknown)

® Yer1 =y + 1y speed change

® fer1 = O + 1o @ Measurements change position and

@ The noise “code” the (unknown) speed thanks to correlations
motion

[Matlab: RUN7]
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Visual SLAM
Outline

© Visual SLAM
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Visual SLAM

VISuAL SLAM PROPERTIES

@ Rely only on camera(s)
solution with one camera easily

extends on multi camera systems

Extensible with measures

motion, GPS position, ...

Smart and cheap

Challenging

lack of depth with one camera

@ Could be solved in Real Time

Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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Visual SLAM
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Visual SLAM
VisuaL SLAM PROPERTIES EKF-BASED SLAM
@ Rely only on camera(s) @ The most consolidated methodology
solution with one camera easily @ Use an Extended Kalman Filter as engine
extends on multi camera systems @ State vector (multivariate gaussian variable):
o Extensible with measures o robot pose
motion, GPS position, ... @ map points
@ Smart and cheap @ Predict robot motion
o Challenging o Observe features in image

lack of depth with one camera

@ Could be solved in Real Time

Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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Visual SLAM
VisuaL SLAM PROPERTIES EKF-BASED SLAM
@ Rely only on camera(s) @ The most consolidated methodology

solution with one camera easily

Use an Extended Kalman Filter as engine

extends o Iti camera systems - . .
xtends on multi camera system @ State vector (multivariate gaussian variable):

o Extensible with measures o robot pose
motion, GPS position, ... @ map points

@ Smart and cheap @ Predict robot motion

o Challenging o Observe features in image
lack of depth with one camera PRO:

@ Could be solved in Real Time

@ Could run in Real-Time on standard PC
@ Well known approach

@ Scalability to large scale
through sub-mapping techniques

CONS:

o Needs a specific parametrization of points

o Suffer of approximation

Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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Visual SLAM
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Landmarks & Features

LANDMARKS FEATURES

o Elements of the map @ The measurable quantity of a

e They code a 3D point landmark

notice: we consider 3D environment o Good features to track in image
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Good Features to Track

CHARACTERISTICS OF GOOD FEATURES

@ Repeatability
The same feature can be found in several images
despite geometric and photometric transformations

Saliency
Each feature has a distinctive description

o Compactness and efficiency
Many fewer features than image pixels

Locality
A feature occupies a relatively small area of the image
robust to clutter and occlusion
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Detector, descriptor, matching, tracking

DETECTOR:

Algorithm that extracts image locations which are easily found in other images of the
same scene (repeatability) = Corner detector

DESCRIPTOR:

Algorithm used to convert a region around a detected keypoint into a more compact
and stable (invariant) form that can be successfully matched against other descriptors
(saliency) = Patch around the corner

FEATURE MATCHING:

An algorithm that efficiently searches for likely matching candidates in other images
even when large amount of motion or appearance change has ocurred

FEATURE TRACKING:

Similar to the previous one but more suitable when images are taken from nearby

viewpoints or in rapid succession = Template matching with patches
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Monocular SLAM key problem - 1

Camera is a bearing-only sensor
Depth is unknown from a single image

Depth can be estimated with triangulation after camera motion
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Monocular SLAM key problem - 2

Depth can be estimated with triangulation after camera motion

Parallax angle cover a key role
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Visual SLAM
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Monocular SLAM key problem - 3

FEATURE DEPTH

@ Unknown at initialization \

@ Uniform distribution from 0 to oo \
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Monocular SLAM key problem - 3

FEATURE DEPTH

@ Unknown at initialization

@ Uniform distribution from 0 to oo

SOLUTION 1: DELAYED INITIALIZATION

For each feature

o Use a set of 3D hypotesis on view ray
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Monocular SLAM key problem - 3

FEATURE DEPTH

@ Unknown at initialization K

@ Uniform distribution from 0 to oo \

SOLUTION 1: DELAYED INITIALIZATION \

\
For each feature

\
o Use a set of 3D hypotesis on view ray ‘\ (BD)
@ Choose the right depth hypothesis ‘\P
o Add it to the filter Q
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Visual SLAM
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Monocular SLAM key problem - 3

FEATURE DEPTH

@ Unknown at initialization

@ Uniform distribution from 0 to oo

SOLUTION 1: DELAYED INITIALIZATION

For each feature

o Use a set of 3D hypotesis on view ray P (ND)

@ Choose the right depth hypothesis
o Add it to the filter

SOLUTION 2: UNDELAYED INITIALIZATION

For each feature

o Add one n-dimensional element that code
o The viewing ray
o The unknown depth

o following a specific Parametrization
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Visual SLAM
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Real Time Monocular SLAM

REAL TiIME MONOCULAR SLAM - SINCE 2003

videos/monoRT .flv

Video from http://www.youtube.com/watch?v=mimAWVm-0qA

Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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Which parametrization?

UID FHP
Unified Inverse Depth Framed Homogeneous Point
v=[t 0 e oo ]T yviP=[t o 4 v wi]T
3D _ 1 3D 1 qi ’ ’ T
P> =t + —m(Y;, i) P"=ti+—R '[Ui vi 1}
Oi wi ||ql||

Ceriani et al. “On Feature Parameterization for EKF-Based Monocular SLAM”, 2010

Montiel, Civera, Davison “Unified inverse depth parametrization for monocular slam”, 2006
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Large Scale SLAM Issues

COMPUTATIONAL COST CONSISTENCY
Grows with # features Due to linearizations of EKF

Time (seg)

50 100 150 200 250
Number of Features
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Large Scale SLAM Issues

COMPUTATIONAL COST CONSISTENCY
Grows with # features Due to linearizations of EKF

Time (seg)

50 100 150 200 250
Number of Features

SOME SOLUTION
@ Conditional Independent Submapping SLAM

@ Explicit Loop Detection & Loop closure recovery methods

Pinies, Tardos “Large Scale SLAM Building Conditionally Independent Local Maps: Application to
Monocular Vision”, 2008

Pinies, Paz, Tardos “CIl-Graph: An efficient approach for Large Scale SLAM”, 2009
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Example in a Real Environment - Monocular Vision

Visual SLAM
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videos/mono.flv

The path is estimated
without any external
information, using a
constant velocity
motion model

The map is represented
by points location

Theoretically
reconstruction is up to a
single scale factor

Practically there is a
scale drift
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Example in a Real Environment - Stereo Vision

Visual SLAM
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videos/stereo.flv

The path is estimated
without any external
information, using a
constant velocity
motion model

The map is represented
by points location

The stereo vision
eliminate the scale
factor ambiguity
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Example in a Real Environment - Trinocular Vision

videos/tri.flv

Visual SLAM
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The path is estimated
without any external
information, using a
constant velocity
motion model

The map is represented
by points location
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Example in a Real Environment - Omnidirectional Camera - 1

o 360-degree field of view

@ Camera

@ Lower Mirror

© Aperture

Q Glass Housing

@ Cover and Upper Mirror (hidden)
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Example in a Real Environment - Omnidirectional Camera - 2

videos/omni.flv

The path is estimated
without any external
information, using a
constant velocity
motion model

The map is not shown
in this case
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Conclusion

Outline

@ Conclusion
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Conclusion
0

Only EKF-SLAM?

PTAM EXAMPLE
Not oNLy EKF-SLAM

o Particle Filters — FastSLAM &
FastSLAM 2.0

@ Extended Information Filter

o Parallel Tracking and Mapping
(PTAM)

@ Junction tree filters

@ Incremental Smoothing and Mapping
(ISAM)
o Local Sparse Bundle Adjustment videos/ptam.webm

o ... from
http : / /www.youtube.com/watch?v = Y9HMn6bd — v8

70/72



Conclusion
o] J

Only EKF-SLAM?

Laser Range Scanner based SLAM
2D SLAM 3D SLAM

videos/slam2dlaser.webm videos/slam3dlaser.webm
from http : / /www.youtube.com/watch?v = fIfNOXHxBKY from http : / /www.youtube.com/watch?v = QQeJlxds OU

other sensors: Microsoft Kinect, etc...
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