Understanding and Using Context
ANIND K. DEY

Future Computing Environments Group
College of Computing & GVU Center
Georgia Ingitute of Technology
Atlanta, GA, 30332-0280, USA

Td: +1-404-894-5103
Fax: +1-404-894-2970
E-mail: anind@cc.gatech.edu

Abstract

Context is a poorly used source of information in our computing environments. As aresult, we

have an impoverished understanding of what context is and how it can be used. In this paper, we
provide an operational definition of context and discuss the different ways that context can be used
by context-aware applications. We a so present the Context Todlkit, an architecture that supports
the building of these context-aware gopli cations. We di scuss the features and abstractionsin the
toalkit that make the task of building applications easier. Finaly, we introduce a new abstraction, a
situation, which we believe will provide additiona support to application designers.

1. Introduction

Humans are quite successul at conveying ideas to each other and reacting
appropriately. Thisis due to many fadors: the richnessof the language they share,
the mmmon undrstanding of how the world works, and an implicit
understanding of everyday situations. When humans talk with humans, they are
ableto useimplicit situational information, or context, to increase the
conversational bandwidth. Unfortunately, this ability to convey ideas does not
transfer well to humans interacting with computers. In traditional interadive
computing, users have an impoverished mechanism for providing input to
computers. Consequently, computers are not currently enabled to take full
advantage of the mntext of the human-computer dialogue. By improving the
computer’s accessto context, we increase the richnessof communication in
human-computer interadion and make it possble to produce more useful

computational services.

In order to use mntext eff ectively, we must understand what context is and how it
can be used, and we must have architectural support. An understanding of context
will enable application designers to choose what context to use in their
applications. An understanding of how context can be used will help application
designers determine what context-aware behaviors to support in their applications.
Finally, architectural support will enable designersto build their applications

more easily. This architectural support has two parts: services and abstractions.

In this paper, we will review previous attemptsto define and provide a
characterization d context and context-aware computing, and then present our
own definition and charaderization. We then discuss how this increased
understanding informs the development of a shared infrastructure, the Context
Toolkit", for context-sensing and context-aware gplication development. We
discussboth the services off ered by the toolkit and the programming abstradions

it providesto designers.

! The Context Toolkit can be downloaded at http://www.cc.gatech. edu/fce/contexttool kit

2. What is Context

To develop a specific definition that can be used prescriptively in the cntext-
aware computing field, we will look a how researchers have dtempted to define
context in their own work. While most people tacitly understand what context is,
they find it hard to elucidate. Previous definitions of context are done by

enumeration of examples or by choasing synonyms for context.

2.1 Previous Definitions of Context

In the work that first introduces the term ‘ context-aware,” Schilit and Theimer [7]
refer to context as location, identities of nearby people and ohects, and changesto
those objects. These types of definitions that define mntext by example are
difficult to apply. When we want to determine whether a type of information nd
listed in the definition is context or nat, it isnot clear how we can usethe

definition to solve the dilemma.

Other definitions have simply provided synonyms for context; for example,
referring to context as the environment or stuation [1,4,8]. Aswith the definitions
by example, definitions that simply use synonyms for context are extremely
difficult to apply in practice. The definitions by Schilit et al. [6] and Pascoe [3]

are dosest in spirit to the operational definition we desire. Schilit et al. claim that
the important aspects of context are: where you are, who you are with, and what
resources are nearby. Pascoe defines context to be the subset of physicd and
conceptua states of interest to a particular entity. These definitions are too
spedfic. Context is all about the whole situation relevant to an applicaion and its
set of users. We @annot enumerate which aspects of al stuations are important, as
thiswill change from situation to stuation. For this reason, we could na use these

definitions provided.

2.2 Our Definition of Context

Context is any information that can be used to characterize the
situation of an entity. An entity isa person, place, or object that is
consdered relevant to the interaction between a user and an

application, including the user and applications themsel ves.

This definition makes it easier for an applicaion developer to enumerate the
context for a given application scenario. If apiece of information can be used to
characterize the situation of a participant in an interaction, then that informationis
context. Take the canonicd context-aware goplication, an indoor mobile tour
guide, as an example. The obvious entitiesin this example ae the user, the
application and the tour stes. We will | ook at two pieces of information — weather
and the presence of other people — and use the definition to determine whether
either one is context. The weather does nat affed the applicaion becauseit is
being used indoors. Therefore, it is not context. The presence of other people,
however, can be used to characterizethe user’s stuation. If auser istraveling with
other people, then the sites they visit may be of particular interest to her.
Therefore, the presence of other people is context because it can be used to

characterizethe user’s stuation.

3. Defining Context-Aware Computing

Context-aware computing was first discussed by Schilit and Theimer [7] in 1994
to be software that “adapts according to itslocation d use, the collection o
nearby people and objeds, as well as changes to those objeds over time.” Since
then, there have been numerous attempts to define mntext-aware mmputing, most

of which have been too spedfic [2].

3.1 Our Definition of Context

A systemis context-aware if it uses context to provide relevant

information and/or servicesto the user, where relevancy depends on

the user’ stask.
We have dhosen ageneral definition of context-aware computing. When we try to
apply previous definitions to established context-aware goplications, we find that
they do na fit.

3.2 Features for Context-Aware Applications

Similar to the problem of defining context-aware, researchers have dso tried to
spedfy the important features of a cntext-aware gplication [3,6]. Again, these

features have tended to be too spedfic to particular applications.

Our proposed categorization combines the ideas from previous taxonomies and
attempts to generalize them to satisfy all existing context-aware applications.
There are three categories of features that a context-aware application can support:
* presentation of information and services to a user;
« automatic execution of a service for auser; and

» tagging of context to information to support later retrieva

4. Support for Building Applications

With an understanding of what context is and the different ways in which it can be
used, application builders can more easily determine what behaviors or features
they want their applications to support and what context is required to achieve
these behaviors. However, something is still missing. Application builders may
need help moving from the design to an actual implementation. This help can
comein two forms. Thefirst isa combination of architectural services or features
that designers can use to build their applications from. The second form is
abstractions that dlow designers to think about their applications from a higher
level. We have built an architecture, the Context Toolkit, that contains a
combination of features and abstractions to support context-aware application
builders. In this section, we will discuss the features and abstractionsin the
Context Toolkit, and propose anew abstraction.

4.1 Features for Context-Aware Applications

The Context Toolkit makes it easy to add the use of context to existing non-
context-aware applications and to evolve existing context-aware applications. In
addition, the architecture makes context-aware applications resstant to changesin
the context-sensing layer. It encapsulates changes and the impact of changes, so
applications do not need to be modified.

Our architecture is built on the concept of enabling applicationsto obtain the
context they require without them having to worry about how the context was
sensed. In previous work, we presented the context widget [5], an abstraction that
implements this concept. A context widget is responsible for acquiring a certain
type of context information and it makes that information available to applications

in a generic manner, regardless of how it is actually sensed. Applications can

access context from widgets using traditional poll and subscribe methods,

commonly available with graphical user interface (GUI) widgets.

With most GUI applications, widgets are instantiated, controlled and used by only
asingle application. In contrast, our context-aware applications do not instantiate
individual context widgets, but must be able to access existing ones, when they
require. To meet this requirement, context widgets operate independently from the
applications that use them. This eases the programming burden on the application
designer by not requiring her to maintain the context widgets, while alowing her
to easily communicate with them. Because context widgets run independently of

applications, there is aneed for them to be persistent, available dl the time.

Because an important part of context is historical information, the Context Toolkit
provides support for the storage of context. Context widgets automatically store
all of the context they sense and make this history available to any interested
applications. Applications can use historical information to predict the future
actions or intentions of users. This prediction or interpretations functionality is
encapsulated in the context interpreter abstraction. Interpreters accept one or more
types of context and produce a single piece of context. An example is converting
from aname to an e-mail address. A more complicated example is interpreting
context from al the widgets in a conference room to determine that a meeting is

occurring.

Traditiona user input comes from the keyboard and mouse. These devices are
connected directly to the computer they are being used with. When dealing with
context, the devices used to sense context most likely are not attached to the same
computer running the application. For example, an indoor infrared positioning
system may consist of many infrared emitters and detectorsin abuilding. The
sensors must be physically distributed and cannot all be directly connected to a
single machine. The Context Toolkit makes the distribution of the context
architecture transparent to context-aware applications, mediating all

communications between applications and components.

The final abgtraction supported by our architecture is aggregation. Context
aggregators aggregate or collect context. The notion of an aggregator comes
directly from our definition of context. We defined context as information used to
characterized the situation of an entity. If we think of a context widget as being
responsible for a single piece of information, we need an abstraction to represent
an entity. This abstraction, a context aggregator, is responsible for al the context
for asingle entity. When designers think about context and interactions, it is
naturd for them to think in terms of entities, and that makes an aggregator the
correct abstraction to use for building applications. Aggregators gather the context
about an entity (e.g., a person) from the available context widgets, behaving as a

proxy to context for applications.

To summarize, the Context Toolkit supports common features required by
context-aware applications. capture and access of context, storage, distribution,
and independent execution from applications. The toolkit provides three

abstractions. widgets, interpreters and aggregators.

4.2 The Situation Abstraction

The support provided by the Context Toolkit has enabled us to build a number of
applications that would otherwise have been difficult to build. However, we have
recently been experimenting with a new type of abstraction for supporting

application builders. This new abstraction, a situation, isat alevel above widgets,

interpreters and aggregators.

The idea of the situation abstraction was aso derived from our definition of
context. Currently, application designers need to explicitly poll and subscribe to
widgets and aggregators for context information and call on interpretersto
determine when relevant entities are in a particular state so they can take action.
This collection of states can be described as a situation.

The stuation abgtraction is exactly that: a description of the states of relevant
entities. We believe that providing this description requires less effort than
determining which individual context components need to be contacted and
determining when the collective situation has been realized or satisfied. Instead,

the Context Toolkit is responsible for the trandation of the description to the
“wiring” of the mntext components and for determining when the individual
elements of the situation have been colledively satisfied. Now context-aware
application designers can concentrate on the heart of the design process
determining what context-aware features their application should support and
when should they be enacted.

We airrently have limited support for the situation abstradion. We are struggling
with the tradeoff between supporting extremely complex situations and providing
a simple method for describing situations. Ideally, we would like to support both
simultaneously. By simplifying the processfor determining when interesting
events occur, the situation abstraction may prove to be useful for end users. One
of the holy grails of context-aware cmputing isto have gplicaionsthat do the
right thing at the right time for users. While designers who have domain-spedfic
expertise can determine part of the solution, they will obvioudy not think of
everything that is needed to support individual users. It isthe end wser who isin
the best position to further specialize mntext-aware gplications to med their
individual needs. The situation abstradion may allow usersto perform this

spedalization.

We would like to carry out user studies to investigate whether the situation
abstractionis appropriate for both application designers and end-users and how it
compares to the original abstractions of widgets, aggregators, and interpreters.

References

1. Schilit, B., Theimer, M. Diseminating Active Map Information to Mohile Hosts. IEEE Network, 8(5).
199, pp 2232.

2. Brown, P.J. The Stick-e Document: a Framework for Creaing Context-Aware Applications. In:
Proceelings of Electronic Publishing '96. 1996. pp 259272

3. Rodden, T., Cheverst, K., Davies, K. Dix, A.. Exploiting Context in HCI Design for Mohile Systems.
Workshop a1 Human Computer Interadion with Mobile Devices (1999

4. Ward, A., Jones, A., Hopper, A. A New Location Technique for the Active Office IEEE Personal
Communications 4(5). 1997. pp 4247

5. Schilit, B., Adams, N. Wart, R. Context-Aware Computing Applications. 1% International Workshop
Mobile Computing Systems and Applications. 1994. pp85-90

6. Pascoe, J. Adding Generic Contextual Capabilities to Weaable Computers. In: Proceadings of 2"
International Symposium on Wearable Computers. 1998. pp 9299

Dey, A.K. Abowd, G.D. Towards aBetter Understanding of Context and Context-Awareness CHI 2000
Workshop athe What, Who, Where, When, and How of Context-Awareness(2000)

Salber, D., Dey, A K., Abowd, G.D. The Context Todkit: Aiding the Development of Context-Enabled
Applicaions. In: Procealings of CHI’ 99. 199. pp 434441

