
Context Modeling

Some issues & techniques

Alessandra Agostini – Sistemi Context-Aware

Context Models

- "A system is context-aware if it uses context to provide relevant information and/or services to the user, where relevancy depends on the user's task." (A. Dey)
- Some relevant questions:
 - How is context retrieved?
 - How is context represented?
 - How is context stored and managed?
 - How is context accessed by applications?
 - How is context shared between applications?

From Tutorial on Context Modeling, CoMoRea'10, by Bettini et al.

Alessandra Agostini - Sistemi Context-Aware

Context Sources

- Context data could/should be grouped together by theirs sources:
 - 1. Sensors
 - 2. Applications
 - 3. Static environmental information
 - 4. (User, Application, Provider) Preferences

Context Sources: 1 - Sensors

- Positioning systems (e.g., GPS, IPS-Indoor Positioning System)
- Temperature, acceleration, light, etc.
- Sensor Fusion
 - Light, more than n people, noise
 room
 - Dimmed light, more than n people, 1 talking
 presentation

Context Sources

- 2. Applications, e.g.:
 - state of services, specific information (e-notes, doorplates)
- 3. Static environmental information e.g.:
 - Global reference systems
 - Symbolic (world/USA/Berkeley ...)
 - Geometric (N 50 11.8 E 009 10.2)
 - Topological information
 - Floor plans
 - Road network
 - City maps

Context Sources: 4-Preferences

a. User

- Affection
- Restrictions e.g., a visually impaired person
 - \rightarrow audio output
- Cost, quality, ...
- b. Application (business logic) / Provider
 - Requirements on services, devices (displays, position information, ...)

Context Data: further characterization

- Static: context data which are created and never (or rarely) changed, e.g. road maps
- Dynamic: context data which are updated frequently, periodically, or on demand
- Sensed: context data obtained via sensors (reflecting state of the physical world)
- Application provided: context data provided by applications (mainly referring to virtual state w.r.t. the physical world)

Various Context Classifications

	Location	Conditions	Infrastructure (Computing Environment)	Information on User	Social	User Activity	Time	Device Characteristics
[Benerecetti et al. '01]	Physical Environment			Cultural Context				
[Schmidt et al. '99]	Physical Environment		Human Factor			x		
[Lieberman and Selker'00]	User Environment	Physical Environment	х	User Environment			x	
[Hull et al. '97]		Physical Environment		х				Х
[Chalmers and Sloman'99]	x		х		х	x		Х
[Lucas'01]	Physical E	vsical Environment Information context					Х	
[Schilit et al'94]	Physical Environment X		User environment					
[Abowd and Dey'99]	x			Identity		x	x	Identity
[Chen & Kotz'00]	Active/Passive							

From CoMoRea'04, Panel 1

Evolution of Context Modeling Goal

- Early models mainly addressed the modeling of context with respect to one application or an application class
- Generic context models are more interesting since many applications can benefit from these, of course they are more complicated
- The objective of most current research is to develop uniform context models, representation and query languages as well as reasoning algorithms that facilitate context sharing and interoperability of applications

Some Context-awareness Requirements

- Support for distributed context data
 - Users, Network operators, Service providers, ...
- Interoperable context representation
 - Shared knowledge and standard formats
- Support for context dynamics
 - Intra session changes + user and provider policies
- Efficiency
 - Multiple requests have to be served in real time
- Support for reasoning

See publication on Care, Agostini et al.

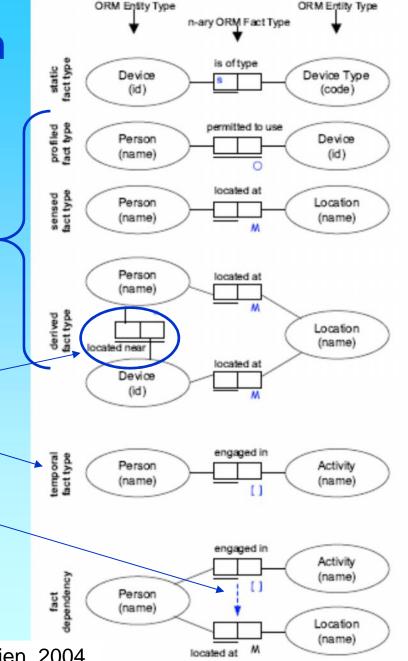
Some Context-Modeling Requirements

- Distributed composition
- Partial Validation (structure and instances)
- Richness and quality of information
- Incompleteness and ambiguity
- Level of formality (same interpretation of the data exchanged → semantics)
- Applicability to existing environments

Modeling Approaches: Simple Listing

- Object-Oriented Models (e.g., TEA and GUIDE projects): benefits -> inheritance, encapsulation and reusability
- 2. Key-Value Models
- 3. Graphical Models (e.g., *UML*, Object-Role Modeling extension)
- 4. Markup Scheme Models (CC/PP & its extensions)
- 5. Logic Based Models
- 6. Ontology Based Models (e.g., CONON, CoBra, SOUPA, SOCAM)
- 7. (Hybrid Approaches)

Key-Value Models


- The model of **key-value pairs** is the most simple data structure for modeling contextual information
- The key-value modeling approach is frequently used in distributed service frameworks. In such frameworks, the services itself are usually described with a list of simple attributes in a key-value manner, and the employed service discovery procedure (e.g. SLP, Jini,... see [39]) operates an exact matching algorithm on these attributes
- Key-value pairs are:
 - easy to manage
 - lack capabilities for sophisticated structuring (also useful for enabling efficient context retrieval algorithms)

Object-Role Model extension (Henricksen et al.)

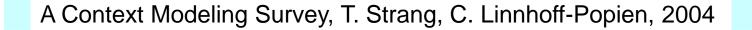
- Basic concept is the *fact*
- Modeling means identifying fact types and the roles that entity types play in these

Henricksen extention:

- 1. Fact types can be categorised as: *static* or *dynamic*
- 2. Dynamic facts can be distinguished in: profiled, sensed or derived types
- 3. Quality indicator to cover time-aspects-
- Fact dependencies represents a special type of relationship between facts; a change in one fact leads automatically to a change in another fact

A Context Modeling Survey, T. Strang, C. Linnhoff-Popien, 2004

Figure 3: Contextual Extended ORM

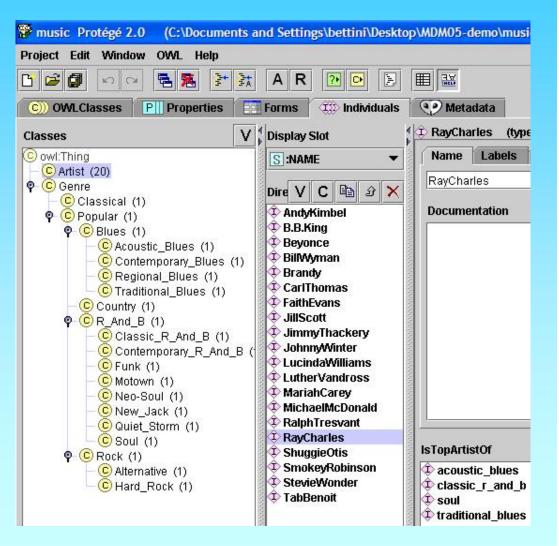

Markup Scheme Models

- Common to all markup scheme modeling approaches is a hierarchical data structure consisting of markup tags with attributes and content. The content of the markup tags is usually recursively defined by other markup tags
- Typical context modeling approaches are **profiles** usually based upon a serialization of a derivative of *Standard Generic Markup Language (SGML)*, the superclass of all markup languages
- Some of them are defined as extension to the Composite Capabilities / Preferences Profile (CC/PP) and User Agent Profile Vocabulary (<u>UAProf in HTML,UAProf in RDF/S</u>) standards, which have the expressiveness reachable by <u>RDF/S</u> and a XML serialization. (A W3C Recommendation for the specification both of device capabilities and user preferences; now see Open Mobile Alliance); an example of validated profile
- These approaches usually extend the basic CC/PP and UAProf vocabulary to try to cover the higher dynamics and complexity of contextual information compared to static profiles

Extended profile

Logic Based Models

- A logic defines the conditions on which a concluding expression or fact may be derived (namely reasoning or inferencing) from a set of other expressions or facts. To describe these conditions in a set of rules a formal system is applied
- The context is defined as facts, expressions and rules. Contextual information is added to, updated in and deleted from a logic based system in terms of facts or inferred from the rules in the system respectively
- All logic based models have a high degree of formality



Ontology Based Models

An ontology is the attempt to build a conceptual schema complete and rigorous for a specific domain; it is generally a hierarchical structure which contains the relevant entities, the relationships among them, the axioms and the constrains of the domain.

Ontologies for:

- Clear semantics of context concepts
- Knowledge sharing among involved entities
- Deriving further contextual information
- Consistency check of contextual data instances

Context Modeling

An Example: CARE

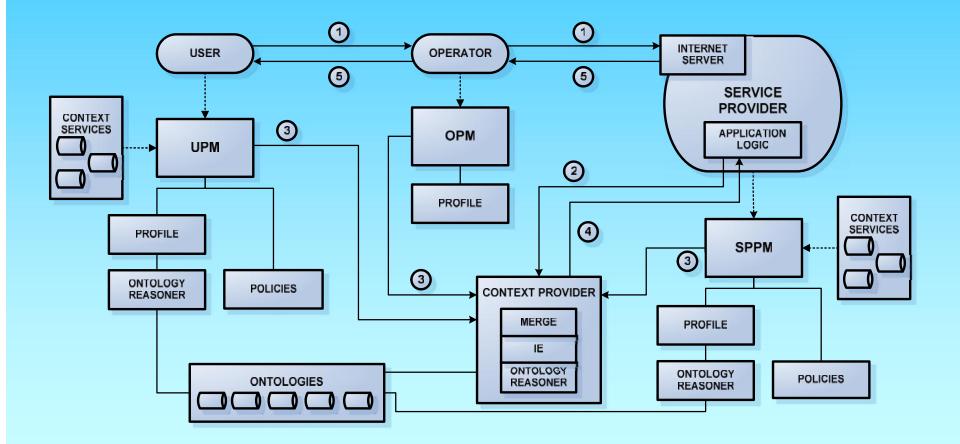
Alessandra Agostini – Sistemi Context-Aware

CARE

- CARE is a middleware supporting different (generic) application domains
- CARE uses an hybrid approach to context modeling integrating CC/PP profiles, rules/policies, and ontologies

see CARE by Agostini, Bettini, Riboni et al. (http://webmind.dico.unimi.it/care/)

Context-Awareness Requirements


A middleware for context-aware adaptation and personalization should:

- Support distributed context data
- Allow interoperability of context representation
- Support context dynamics
- Handle "complex" context data (e.g., sociocultural data)
- ... while maintaining efficiency

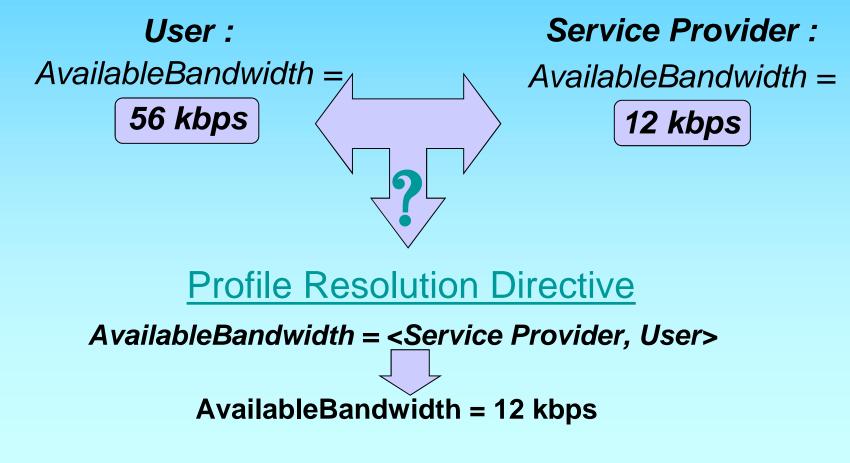
Context Modeling: Bases

- Context data are "any information that can be used to characterize the situation" [Dey, '01] of a mobile user requesting a service
- Context data include spatio-temporal data, environmental conditions, technological infrastructure data, socio-cultural information
- Context Data are handled by different distributed entities (users, network operators, service providers)
- Context data of a single entity (profile) are partial and conflicting with other entities' profiles
- User and service provider can declare policies over profile data for adapting the service

Architecture Overview

Adaptation based on profiles and policies

- An extended notion of profile includes information about:
 - User personal data, device capabilities, network infrastructure, location, time...
- Profile information is distributed:
 - Users
 - Network operators
 - Service providers
- Both user and service provider can declare *policies* to adapt and personalize the service


Profile representation

• Requirements:

- Structure
- Interoperability
- Extensibility
- Semantics
- <u>Composite Capability/Preference Profiles (CC/PP)</u>
 - A W3C effort for the specification both of device capabilities and user preferences
 - Based on RDF/XML
 - Profiles constructed as a two-level hierarchy:
 - Components
 - Attributes belonging to a single Component

Merging profile data

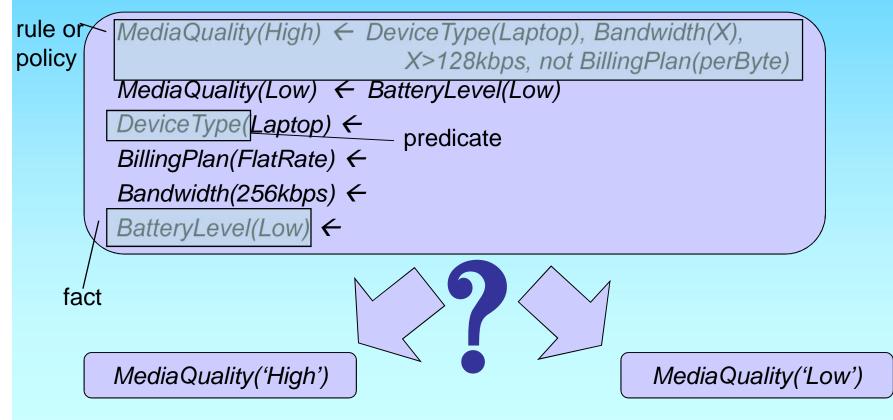
 Different entities can provide different values for the same profile attribute

Policy representation

- Requirements:
 - Expressiveness
 - Rule chaining
 - Efficiency
 - Conflicts handling
- A policy rule is composed by
 - A set of conditions on profile data that determine a new value for a profile attribute when satisfied

Specification of policies

"When I am using a laptop, the bandwidth is **higher than** 128kbps, and the billing plan **is not** per byte, I want to receive high-resolution multimedia content"


User interface:	\geq

Media Quality Preference					
		Attribute	Negation	Value	
I prefer MediaQuality High 👻	When	DeviceType 👻	is 💌	Laptop 🕑	Remove
	And	Bandwidth 💌	is 💌	GreaterThan 💌 128kbps	Remove
	And	BillingPlan 💌	is not 💌	PerByte 🔽	Remove
				Add Condition	

 $\begin{aligned} & \textit{MediaQuality(High)} \leftarrow \textit{DeviceType(Laptop), Bandwidth(X),} \\ & >(X, 128kbps), \textit{ not BillingPlan(perByte).} \end{aligned}$

Policy conflicts

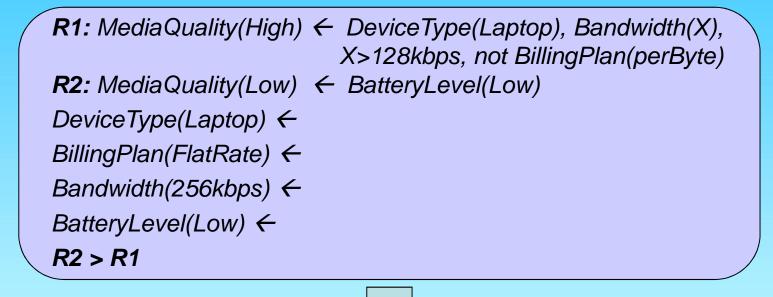
- At most a single ground atom for each predicate must be present in the program model
- An example of two conflicting policies (due to the actual facts)

Conflict resolution strategies

Example:

MediaQuality = < UPM, SPPM, OPM > (profile resolution directive)

conflicts with	UPM RUL		SPPM RULE
UPM RULE	Explicit price	rity	UPM rule
SPPM RULE	UPM rule		Explicit priority
UPM FACT	UPM rule		UPM fact
SPPM FACT	UPM rule		SPPM rule
OPM* FACT	UPM rule	,	SPPM rule

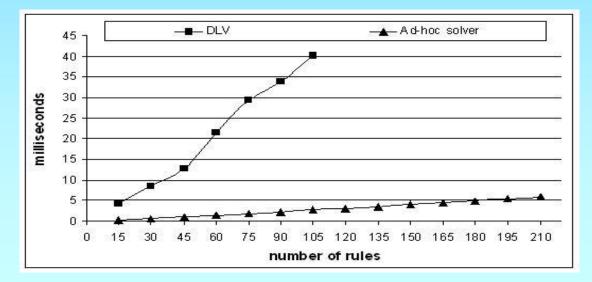

*OPM non definisce regole

Alessandra Agostini – Sistemi Context-Aware

Explicit Priority: Language extensions

- We extended general logic programs with *labels* and *priorities*
- The expression R1 > R2 states that rule R1 has higher priority than rule R2
- A second parameter is added to predicates
 - Predicate(Value, Weight)
 - Example:
 - Rule "MediaQuality(Low,2) ← DeviceType(CellPhone, X)" has weight 2

Policy conflict resolution: example


 $\begin{array}{l} \textit{MediaQuality(High, 0)} \leftarrow \textit{DeviceType(Laptop, _), Bandwidth(X, _),} \\ \textit{X>128kbps, not BillingPlan(perByte, _), not MediaQuality(_, J), J>0 \\ \textit{MediaQuality(Low, 1)} \leftarrow \textit{BatteryLevel(Low, _), not MediaQuality(_, J), J>1 \\ \textit{DeviceType(Laptop, 0)} \leftarrow \textit{not DeviceType(_, J), J>0 \\ \textit{BatteryLevel(Low, 0)} \leftarrow \textit{not BatteryLevel(_, J), J>0 } \end{array}$

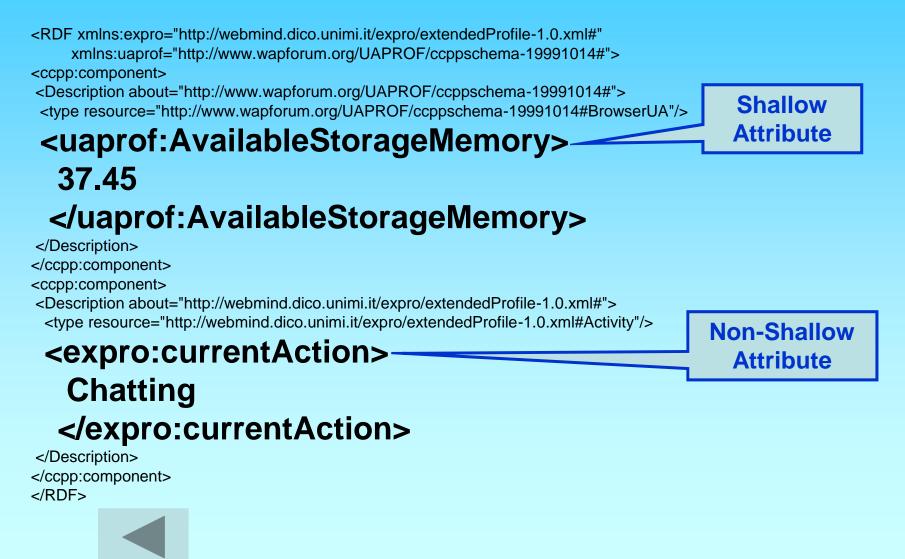
Formal properties

- The weight algorithm ensures that
 - no pair of rules exist having the same head predicate symbol and the same weight
 - rules having the same head predicate but higher weight have higher priority, according to our conflict resolution strategy, over those with lower weights
- The transformations preserve *acyclicity*
- An evaluation algorithm is devised that is *linear* in the number of rules

Performance evaluation

- Our policies can be evaluated by standard solvers (e.g. Mandarax, DLV)
- We have developed an ad-hoc evaluator in order to improve the performance, exploiting the characteristic features of our language

Context Modeling

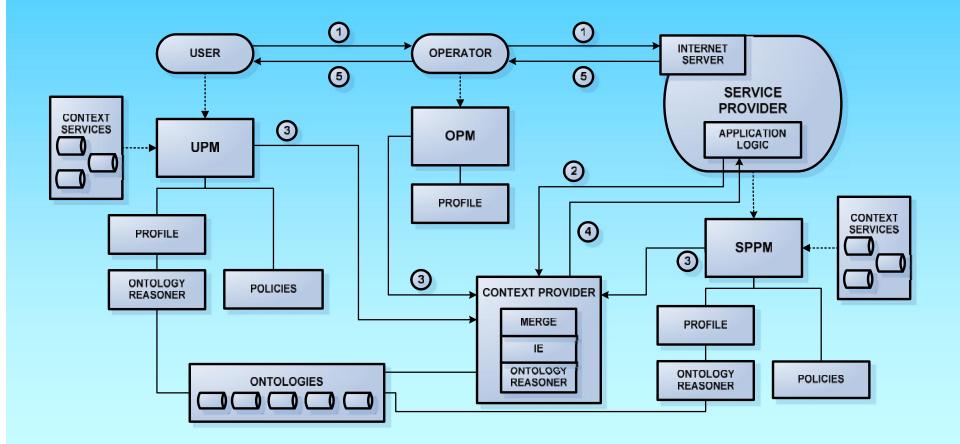

- We distinguish two categories of profile data which need different representations:
 - Shallow profile data (e.g., device capabilities, network characteristics)
 - Non-shallow profile data (e.g., socio-cultural information, user interests)

Modeling Shallow Profile Data

- "Simple" data are modeled by attribute/value pairs adopting the CC/PP language
- CC/PP (Composite Capability/Preference Profiles) profiles:
 - RDF graphs composed by sets of *components* containing *attributes* with associated values
 - Having a strict two-level hierarchy (componentsattributes)
 - Component/attributes names and their allowed values are defined in CC/PP vocabularies as RDF Schemas
 - Semantics expressed in natural language in the <rdfs:comment> resource

CC/PP proved unsuitable for modeling data belonging to complex domains

An Excerpt of a CC/PP profile


Modeling Non-Shallow Profile Data

- "Complex" data are represented by means of both private and shared ontologies, in OWL-DL, to allow:
 - Knowledge sharing among involved entities (e.g., user interests)
 - Consistency check of contextual data instances
 - Reasoning to derive additional contextual data (e.g., specific activity of the user); in this case, private data of an entity can be exploited too
- To maintain interoperability ontology-based profile data are mapped into CC/PP attributes

Ontological Reasoning Features

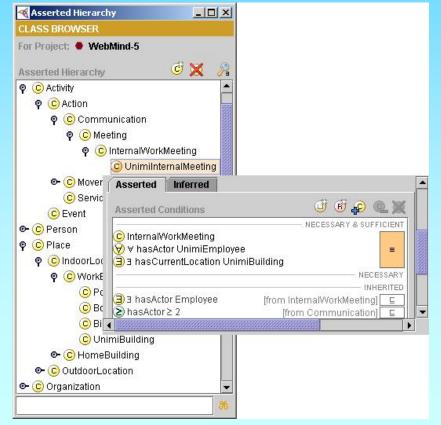
- Off-Line ontological reasoning:
 - Local to a single Profile Manager of an entity
 - Made before the user requests a service
 - Fired by local activation rules (e.g., change on a profile attribute)
 - Possibly using private data and/or private ontologies
- On-Demand ontological reasoning:
 - Local to the Context Provider module
 - Made after building the aggregated profile (i.e., at service request time)
 - Made when crucial ontology-based attributes have no value
 - The Service Provider, carefully, decides which attributes are crucial for a specific service
 - Using the whole aggregated profile
- Ontological and rule-based reasoning are made separately

Architecture Overview

Off-Line Reasoning: An Example

- Alina, a Unimi employee, is a user of an adaptive messaging service
- "When I'm involved in a work meeting I don't wont to receive phone calls; please, set my state to busy"

AvailabilityState(Busy)←currentActivity(InternalWorkMeeting).


• The messaging service redirects calls to Alina's answering machine when she is busy

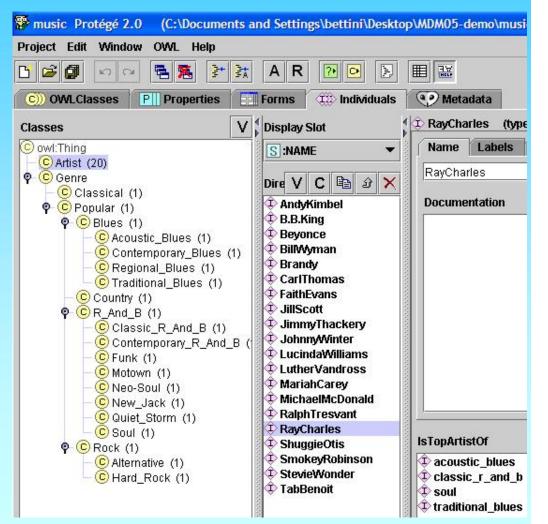
Off-Line Reasoning: An Example

Alina is in her office with a colleague, an entry in her calendar specifies the meeting... all phone calls are redirect to her answering machine

UnimiInternalMeeting Activity 2 Actor ∀Actor.UnimiEmployee ∃ Location.UnimiLocation

UnimiEmployee Employee ∃ Employer.{unimi}

Alessandra Agostini - Sistemi Context-Aware


On-demand Reasoning: An Example

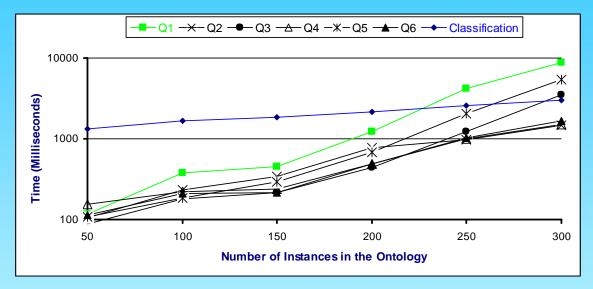
- John is a user of a location-based recommendation service, selecting and ordering POIs and events according to user's interest and location
- John submits a query, but his integrated profile lacks his preferred music genres

On-demand Reasoning: An Example

- However, the profile contains his preferred artists
- The Context
 Provider infers that
 John likes R&B
 music and updates
 the profile

On-demand Reasoning: An Example

 The service, exploiting the profile, is now able to select and order the music items appropriately



A Prototype Using CARE: POIsmart

- A context-aware web service delivering POIsmarts
- POIsmarts:
 - Convergence of bookmarks and navigational Points of Interests
- Adaptation based on:
 - User location
 - User interests
 - Device capabilities
 - Device status
 - Available bandwidth
 - ...

Some Experimental Evaluation

- Tests made on our OWL-DL ontology modeling (part of) socio-cultural context (≅ 150 classes & relations) using Racer on a 2-processor Xeon, 2.4 GHz, 1.5 GB RAM
- Evaluation of policies, on-demand only, is not included; it is linear in the number of rules

Some Conclusions

- Off-line reasoning on dedicated servers seems a practicable solution
- On-demand reasoning introduces both an appreciable delay on service provisioning and scalability problems
- OWL-DL shown some expressiveness limitation