Service Science UniMiB F9101Q022 Validated Learning mirko.cesarini@unimib.it

Recap

- Main concepts learnt till now
 - Learning is the essential unit of progress for startups
 - Logic behind MVP building (Minimum Viable Product)
 - Identify the riskiest assumptions
 - Build an MVP to test assumptions, everything not related to learning is eliminated
 - Iterate the Build-Measure-Learn-Feed-back Loop to maximize the knowledge acquisition
- What will we do next?
 - How can we measure the learning achievements?
 - How to make adjustments to the service/product vision
 - How to prioritize where to invest in future development.

A Management History

- A manager was tasked to build a new product
- She/he goes back to her company's chief financial officer (CFO) after a year and says,
 - "We have **failed to meet** the **growth targets**. No new customers and no new revenue ..."
 - "... However, we have learned an incredible amount and are on the cusp of a breakthrough new line of business. All we need is another year."
- Most of the time, this would be the manager last day of work in an organization

The importance of Measuring

- In general management, a failure to deliver results is due to
 - either a failure to plan adequately or ...
 - ... a failure to execute properly
- How can the CFO be sure that the manager is not lying i.e.,
 - the failure is not on execution ...
 - ... and the initial plan was wrong due to lack of knowledge?
- Call for **measuring** the learning achievements
 - If the manager can document learning achievements with empirical data ... she/he won't be fired (hopefully)
 - Management motto: if you can't measure it, you can't manage it

Validated Learning

- Goal: to empirically validate the learning achievements
- Learning is demonstrated (validated) by metrics positive improvements
 - If an MVP has no measurable metrics, it is not worth creating it.
 - it's easy to kid yourself about what you think customers want
 - It's also easy to learn things that are completely irrelevant
 - Suppose the Build-Measure-Learn loop was repeated several times
 - some service modification/improvement/... were tested, and measured
 - You can detect from data if there are some improvements (even small and limited)
 - e.g., # of monthly new customers (before & after the new service implementation)
- Challenge: to identify the metrics to measure the MVP achievements (and the start-up core activity performances in general)

Metric Example

- Suppose sales volume (can) measures a company growth
 - Sale profits are reinvested in marketing and promotions to gain new customers
 - The rate of growth depends primarily on
 - 1. the margin of each sale (sales costs of goods sold)
 - 2. the repeat purchase rate of existing customers
 - 3. the cost of acquiring new customers
 - The higher 1. and 2. are, the lower 3. is, the faster the company will grow
 - The 1), 2), and 3) KPIs can be observed after each Build-Measure-Learn loop

Example

• Company selling a single product/service

	Months	M1	M2	M3	М4	M5	M6	M7	M8	М9	M10	M11	M12	M13	M14	M15
A	Average Sale Price per unit	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B	Average Cost per Unit	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
С	# New Users/Month	4	2	3	4	3	4	5	18	32	56	131	262	786	1'965	4'912
D	# Total Users	4	6	9	13	16	20	25	43	75	131	262	524	1'310	3'275	8'187
E	Avg # Items Purchased per User per Month	1.0	1.0	1.0	0.8	0.8	0.7	0.9	1.1	1.3	1.6	1.8	2.4	2.8	2.9	3.0
F	Avg # Items Purchased considering only the last month new users	1.0	1.0	1.0	0.5	0.5	0.5	1.5	1.5	1.5	2.0	2.0	3.0	3.0	3.0	3.0
G	# (total) Purchases per Month	4	6	9	7	8	10	38	65	113	262	524	1'572	3'930	9'825	24'561
Η	New Customer Acquisition Cost	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
1	Activities performed				Action A			Rollback / Action B		: А ,	Action C		Action D			

• Considering the data shown here (A ... H), Which is the best indicator(s) to evaluate the actions?

Considerations

- F shows the behavior of the last acquired customers in the last month
- F is better than E to highlight the impact change

	Months	М1	М2	мз	М4	М5	М6	М7	М8	М9	M10	M11	M12	M13	M14	M15
A	Average Sale Price per unit	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B	Average Cost per Unit	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
С	# New Users/Month	4	2	3	4	3	4	5	18	32	56	131	262	786	1'965	4'912
D	# Total Users	4	6	9	13	16	20	25	43	75	131	262	524	1'310	3'275	8'187
E	Avg # Items Purchased per User per Month	1.0	1.0	1.0	0.8	0.8	0.7	0.9	1.1	1.3	1.6	1.8	2.4	2.8	2.9	3.0
F	Avg # Items Purchased considering only the last month new users	1.0	1.0	1.0	0.5	0.5	0.5	1.5	1.5	1.5	2.0	2.0	3.0	3.0	3.0	3.0
G	# (total) Purchases per Month	4	6	9	7	8	10	38	65	113	262	524	1'572	3'930	9'825	24'561
H	New Customer Acquisition Cost	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
1	Activities performed				Actio	on A		Rollback A, Action B			Action	n C	Action D			

- Rationale of focusing only on fresh customers
 - Good test-bed to assess changes
- F shows that learning was effective (A and B not considered, because they are constant in this case)
- Beware: learning has to be validated by metric positive improvement
- These just showed metrics are an example
 - there is no silver bullet i.e.,
 - different scenario may call for different metrics

Vanity vs Actionable Metrics

- E.g., in the previous case \rightarrow
 - (D) and (G) are vanity metrics
 - (F) is an actionable metric

Actionable Metrics:

- allows people ...
 - ... to draw cause-effect inferences e.g., we are initially doing well because we are using all the revenue to buy new customers
 - ... to identify problems. E.g., the initial (F) (A) (C) values cannot sustain long term customer acquisition

• they help us ...

- ... to design interventions e.g., to design Action A, B, and C
- ... and to evaluate the performances (Action A was bad, Action B was good)

- A Average Sale Price per unit
- **B** Average Cost per Unit
- C # New Users/Month
- D # Total Users
- E Avg # Items Purchased per User per Month
- F Avg # Items Purchased ... considering only the last month new users
- **G** # (total) Purchases per Month
- H New Customer Acquisition Cost

Vanity vs Actionable ... (2)

- E.g., in the previous case \rightarrow
 - (D) and (G) are vanity metrics
 - (F) is an actionable metric

Vanity metrics

- They don't allow to draw cause-effect inferences, consequently, it is impossible to understand what is going on
 - E.g., Why the # of total users is increasing?
 - Is this sustainable?
- Frequently they are (too much) aggregated values: a lot of aggregation prevent understanding the single driving forces/factors
- The curse of vanity metrics: numbers look like good very frequently (D and G always increased) and make difficult to understand the underlaying behaviors / problems

A Average Sale Price per unit

- **B** Average Cost per Unit
- C # New Users/Month
- D # Total Users
- E Avg # Items Purchased per User per Month
- F Avg # Items Purchased ... considering only the last month new users
- G # (total) Purchases per Month
- H New Customer Acquisition Cost

3 A's of Good Metrics

• Actionable metrics help to draw cause-effect inferences, which help

- to deeply understand what is going on (if you can understand ..., you can wisely act)
- to early identify problems
- to design corrective actions
- to evaluate action performances

• Accessible metrics

- Can be easily **understood** by people
 - Keep it simple
 - Few indicators
- Are easily accessed by the involved team, both in terms of
 - Easiness of access (e.g. reports sent weekly by email, web reports easily accessible)
 - Evaluation criterion: if people is not using the metric ... there is a problem
- Auditable metrics can be easily verified
 - In case of bad results it is easy to blame "the messenger", the data quality, the data computation, ... (bad results will come, for sure)
 - If everyone can check how metrics are computed, how data is retrieved, ... this help reducing the blaming attitude

Metrics and Complexity

- The previous example was oversimplified
- Suppose a company sells several products with
 - Different margins
 - Different purchase rate behaviors
- Even metrics like (F), (A), and (B) may be not enough
- Call for in depth analysis
 - Cohort analysis
 - Split testing (for evaluating actions)
 - E.g., test a new product feature on a cohort and the old one on a different cohort

	Months	М1	M2	мз	М4	М5	M6	М7	M8	М9	M10	M11	M12	M13	M14	M15
A	Average Sale Price per unit	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
В	Average Cost per Unit	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
С	# New Users/Month	4	2	3	4	3	4	5	18	32	56	131	262	786	1'965	4'912
D	# Total Users	4	6	9	13	16	20	25	43	75	131	262	524	1'310	3'275	8'187
E	Avg # Items Purchased per User per Month	1.0	1.0	1.0	0.8	0.8	0.7	0.9	1.1	1.3	1.6	1.8	2.4	2.8	2.9	3.0
F	Avg # Items Purchased considering only the last month new users	1.0	1.0	1.0	0.5	0.5	0.5	1.5	1.5	1.5	2.0	2.0	3.0	3.0	3.0	3.0
G	# (total) Purchases per Month	4	6	9	7	8	10	38	65	113	262	524	1'572	3'930	9'825	24'561
н	New Customer Acquisition Cost	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
1	Activities performed				Acti	on A		Roll	back	А,	Actior	n C	Action	D		

 C # New Users/Month
D # Total Users
E Avg # Items Purchased per User per Month
F Avg # Items Purchased ... considering only the last month new users

A Average Sale Price per unit

B Average Cost per Unit

- **G** # (total) Purchases per Month
- H New Customer Acquisition Cost

Metric and Experiments

- You can use the identified metrics not only to test your initial idea ...
- ... but also, to run further experiments
 - E.g., to identify how to tune the growth engine
 - You can run experiments on client subsets
 - E.g., which is the best discount policy to use?
 - Better few under-the-costs items ...
 - ... or a lot of 20% discounted products?
 - Remember: you are not doing "in-silico simulations" (i.e., computer-based simulation in an artificial scenario)

Experiment Useful Methods

- •Funnel analysis
- Cohort analysis
- •Split Testing

Funnel Analysis

 Suppose you are monitoring how many of the people (who downloaded a game app application) have performed In-App Purchases (i.e. they get paid features)

Conversion Rate
100%
90%
45%
45%
20%
15%

- A funnel is a (people) flow in a sequential multi step process
- Conversion rate (for a specific step): how many people reach the step over the original ones
- Each funnel analysis is performed on a specific goal e.g.,
 - Signing up in a web site (i.e., splash page \rightarrow demo \rightarrow sign up)
 - # of software downloads in a web site (site visit → demographic data collection → disclaimer filling → Software download)

Cohort Analysis

- In statistics, a cohort is a group of subjects who share a defining characteristic
- Cohorts are useful
 - To breakdown people into subsets and analyze them separately e.g.,
 - Customers splitting based on the week they downloaded an app
 - Each group is a cohort
 - To perform experiments
 - E.g. several cohorts are selected (no overlapping people)
 - New product features are evaluated on the different cohorts

Split Test Experiments

- **Different** product **versions** offered to **several** customer **subsets** (e.g., cohorts)
- Insights can be discovered by observing group behavior differences
- This technique was pioneered by direct mail advertisers
 - Two versions of the same catalogue are sent to two groups of customers
 - The 2 catalogues have identical products but different design
 - 2 groups of different people with similar demographics were selected
 - The catalogue that lead the best performances (e.g., # orders) is the winner
- When the groups are two, this technique is called A/B testing

Reverse Order Planning

- MVPs and Experiments should be designed in reverse order as one might expect
 - 1. to figure out what is needed to learn
 - 2. to identify what should be measured to validate the learning
 - 3. to figure out how to build/improve the MVP to run the experiment and get the measurement
 - remark: an MVP is an early-stage product, not only a single test
 - Meaningful feed-backs can only be obtained from a complete product (even if at early stage), especially unforeseen issues

Experiment Example

- Scenario: Banks and the Credit Card business (U.S.A. 1990)
- Important concepts (from the bank point of view)
 - Revenues: Card fees + interests
 - In the U.S.A. people can (and often do) reimburse expenses in several months
 - Interest are charged for reimbursements exceeding 1 month
 - Loss: customer defaults (bankruptcy)
- In (U.S.A. 1990)
 - Uniform pricing and terms: everybody had the same fees, credit limits, interest rates
 - Bank competition focusing on
 - Enlarging the customer base
 - Avoiding customers having high default probability

Signet Bank Case

- Idea: Identify customers that will pay more on interests
- "Anyone can find customers who will take money and not pay you back! The trick is to find customers who will take a lot of your money fast and pay you back slowly."
 - Maximize the bank income on interests
 - Minimize the losses due to customer default
- Problem: banks did not know who were the "best profitable customers" according to the criteria above
- Idea:
 - Create different credit card products for several customer types
 - Build a predictive model to identify customer profitability (in addition to default probability), based on demography, age, income level, ...
 - Identify the most profitable customers and solicit them to churn using marketing
- This idea was implemented at the Signet Bank (U.S.A.)

Data Problem - Experiments

- Which characteristics make different products desirable to customers and profitable for credit card issuers?
- Not enough data from the existing customer database
- Unfortunately, banks had collected data only ...
 - 1. for the (single-type) terms offered in the past
 - 2. for customers who were deemed worthy of credit by the existing model
- Experiments: different terms were offered at random to different customer cohorts, then data was collected about customer behaviors
- Experiments focused not only on riskier customers but also on less risky ones
 - Nevertheless, the consequences of a lot of experiments was loosing money
 - In this case, losses are the cost of data acquisition
- Losses continued for a few years while the data scientists statisticians worked to build predictive models from the data, evaluate them, and deploy them

Signet - Success

- Finally, Signet's credit card operation turned around and became **so profitable** that the credit card business led to a **spin-off company**: Capital One (very famous in the U.S.)
- The new company grew to be one of the largest credit card issuers
 - Capital One acquired all the best customers
 - Competitors were left with the remaining ones, so, they were forced to follow or die
- In 2000, the bank reported to have carried out 45'000 of "scientific tests" as they called them
 - More details:
 - Clemons, Eric K., and Matt E. Thatcher. "Capital One: Exploiting an information-based strategy." hicss. IEEE, 1998.

Synthesis

- Experiment and learning goals: to find a synthesis between
 - The entrepreneur vision and ...
 - ... what customers would accept
- It is not
 - capitulating to what customers thought they wanted
 - to tell customers what they ought to want
- Validated learning: metric results will help going from opinions to facts