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1 Introduction

Many social, political and economic problems are naturally modeled as
a game of incomplete information, where a player�s payo¤ depends on
his own action, the actions of others, and some unknown fundamen-
tals. For example, many accounts of currency attacks, bank runs, and
liquidity crises give a central role to players�uncertainty about other
players�actions and on the state of "fundamentals". Similarly, the out-
come of many situations of regime changes depends on the decision of
the other players, who, in turn, might depend on a common unknown
fundamental.
Because other players�actions in such situations are motivated by

their beliefs, the decision maker must take account of the beliefs held by
other players, and we know from the classic game theory that rational
behavior in such environments not only depends on economic agents�be-
liefs about economic fundamentals, but also depends on beliefs of higher-
order �i.e., players�beliefs about other players�beliefs, players�beliefs
about other players�beliefs about other players�beliefs, and so on. In
principle, rational strategic behavior should be analyzed in the space of
all possible in�nite hierarchies of beliefs; however, such analysis is highly
complex and is likely to prove intractable in general. It is therefore use-
ful to identify strategic environments with incomplete information that
are rich enough to capture the important role of higher-order beliefs in
economic settings, but simple enough to allow tractable analysis. Global
games represent one such environment. Uncertain economic fundamen-
tals are summarized by a state � and each player observes a di¤erent
signal of the state with a small amount of noise. Assuming that the
noise technology is common knowledge among the players, each player�s
signal generates beliefs about fundamentals, beliefs about other players�
beliefs about fundamentals, and so on.
The global games approach open up other interesting avenues of in-

vestigation. One of them is the importance of private and public
information in contexts where there is an element of coordination be-
tween the players. There is plentiful anecdotal evidence from a variety
of contexts that public information has an apparently disproportionate
impact relative to private information. Financial markets apparently
�overreact� to announcements from central bankers that merely state
the obvious, or rea¢ rm widely known policy stances; political behav-
ior such as demonstrations may become suddenly salient because of
mere public statement. More generally, many behavioral bubbles ap-
pears suddenly following apparently irrelevant public announcements.
But a closer look at this phenomenon with the bene�t of the insights
given by global games makes such instances less mysterious. If partici-
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pants are concerned about the reaction of other participants to the news,
the public nature of the news conveys more information than simply the
�face value�of the announcement. It conveys important strategic infor-
mation on the likely beliefs of other market participants. In this case,
the �bubble�would be entirely rational and determined by the type of
equilibrium logic inherent in a game of incomplete information.
The purpose of these pages is to describe how such models work

and in particular how global game reasoning can be applied to social,
political and economic problems. This would allow to disentangle two
properties of global games. The �rst property is that a unique outcome
is selected in the game. A second, more subtle, question is how such
a unique outcome depends on the underlying information structure and
the noise in the players�signals. Although in some cases the outcome
is sensitive to the details of the information structure, there are cases
where a particular outcome is selected and where this outcome turns
out to be robust to the form of the noise in the players�signals. The
theory of �robustness to incomplete information�as developed by Kajii
and Morris 1997 holds the key to this property.
This note is organized as follows.

2 Coordination Games and the Intuition behind
Global Games

Coordination games make up a special but rich class of games, being
a subset of the games with strategic complementarity or supermodular
games.

Example 1 To introduce this class, let we consider the simplest possible
example:

2
L R

1 U 0; 0 0; �1
D �1; 0 1; 1

Game 1

The interesting characteristics of game 1 are

1. the multiplicity of equilibria;
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2. the Pareto ranking of these equilibria, where the Pareto inferior
equilibrium is risk dominant1 w.r.t to the Pareto e¢ cient strategy
pro�le;

3. the intuitive role of con�dence and expectations as critical elements
for determining players�rational behavior;

4. a natural propagation mechanism such that a change in the struc-
tural parameters that a¤ect the payo¤of one player lead to similar
responses in the behavior of all agents, i.e. to positive comove-
ments.

Suppose that it is possible to rank players�strategies such that

R > L and D > U

then coordination games display two further properties:

1. strategic complementarity, i.e. an "higher" choice by 2 increases
the marginal return to "higher" choices by 1;

2. positive spillovers, i.e. the payo¤s of a player increases as the
choice of the other player increases.

The general point behind this trivial example is that complete infor-
mation games often have multiple Nash equilibria, and game theorists
have long been interested in �nding good reasons to remove or to reduce
that multiplicity. Morris and Shin 2000 have argued that the apparent
indeterminacy of beliefs in many models with multiple equilibria, such as
in game 1, can be seen as the consequence of two modeling assumptions
introduced to simplify the theory. First, the fundamentals are assumed
to be common knowledge. Second, agents are assumed to be certain
about others�behavior in equilibrium. Both assumptions are made for
the sake of tractability, but they do much more besides. They allow
agents� actions and beliefs to be perfectly coordinated in a way that
invites multiplicity of equilibria.
To remove such multiplicity, Carlsson and van Damme 1993a worked

on the idea that because of the intuitive role of con�dence and expecta-
tions as critical elements for determining players�rational behavior, and
because complete information games are actually the limit of incomplete
information games, the introduction of a bit of private information might
be e¤ective on this multiplicity. As well known, a complete information
model entails the implicit assumption that among the players there is

1Harsanyi and Selten 1988.
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common knowledge of the payo¤s of the game. Suppose that, instead of
observing payo¤s exactly, payo¤s are observed with a small amount of
continuous noise; and suppose that � before observing their signals of
payo¤s � there was an ex ante stage where any payo¤s were possible.
Based on the latter feature, Carlsson and van Damme 1993a dubbed
such games �global games�. In contrast with the logic of coordination
games with common knowledge of payo¤s, global games allow theorists
to model information in a more realistic way, and thereby escape the
straitjacket of perfect coordination of actions and beliefs. It turns out
that there is a unique equilibrium in the global game with a small amount
of noise. This uniqueness remains no matter how small the noise is and
is independent of the distribution of the noise.
As well as any theoretical satisfaction at identifying a unique outcome

in a game, there are more substantial issues at stake. Global games al-
low us to capture the idea that economic agents may be pushed into
taking a particular action because of their belief that others are taking
such actions. Thus, ine¢ cient outcomes may be forced on the agents by
the external circumstances even though they would all be better o¤ if
everyone refrained from such actions. We can draw the important dis-
tinction between whether there can be ine¢ cient equilibrium outcomes
and whether there is a unique outcome in equilibrium. Global games,
therefore, are of more than purely theoretical interest. They allow more
enlightened debate on substantial social, political and economic ques-
tions.
The following example from Carlsson and van Damme 1993b illus-

trates the basic ideas of global games.

Example 2 Let consider a parametric class of games, G (�) ; of the fol-
lowing type:

2
Invest Not Invest

1 Invest �; � � � 1; 0
Not invest 0; � � 1 0; 0

Game G (�)

Note that

1. when � < 0, then (Not invest; Not invest) is the unique domi-
nant strategy pro�le;
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2. when � > 1, then (Invest; Invest) is the unique dominant strategy
pro�le;

3. when � 2 [0; 1] ; then there are two Nash equilibria that can be
Pareto ranked, such that investing is risk dominant if � � 1

2
, not

investing if � � 1
2
:

This class of games allows to introduce the class of global games:
the basic idea of Carlsson and van Damme 1993 is that to select one
equilibrium in the class G (�) it is useful to consider an equilibrium of
G (�) as the limit of an equilibrium of an nearby incomplete information
game as the amount of incomplete information on � goes to zero. In
particular suppose that

Hypothesis 1

1. the players do not exactly observe �, but a signal

�i = � + �"i

2. "i are identically and independently normally distributed with mean
0 and standard deviation 1:

"i � N (0; 1) :

3. Suppose for convenience that each player believes that � is uni-
formly distributed on the real line (thus there is an �improper�prior
with in�nite mass: this does not cause any technical or conceptually
di¢ culties as players will always condition on signals that generate
�proper�posteriors):

� � U (R) :

Remark 1 The assumption that � is uniformly distributed on the real
line is nonstandard, but presents no technical di¢ culties. Such �im-
proper priors� (with an in�nite mass) are well behaved, as long as we
are concerned only with conditional beliefs.2 In particular, it is possible
to show that an improper prior can be seen as a limiting case either as
the prior distribution of � becomes di¤use or as the standard deviation
of the noise � becomes small.

Note that �i is informative on the underlying state of nature � and
on the other players�signal ��i since these signals are correlate with �.

2See Hartigan 1983 for a discussion of improper priors.
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Result 1 These hypothesis imply that

1.
E (�j�i) = �i

2.
�j�i � N

�
�i; �

2
�

3.
��ij�i � N

�
�i; 2�

2
�
:

Now, let elaborate on the idea that the dominant strategy aspect of
the game when � < 0 and � > 1 will spill over to generate a unique
outcome when � 2 [0; 1] and the signal is very informative.
In this class of games of incomplete information, a pure strategy for

player i is a mapping from signals to actions:

si : R! fInvest; Not investg :

Suppose that player i assume that player �i plays a cuto¤ strategy such
that

sk�i (��i) =

�
Invest if ��i > k

Not Invest if ��i � k:
Therefore, according to i, player �i will not invest with probability

P (��i � kj�i) = �
�

1p
2�
(k � �i)

�
where � is the cumulative distribution of the standard normal. This
implies that i0s expected payo¤ from investing is

�i

�
1� �

�
1p
2�
(k � �i)

��
+(�i � 1)�

�
1p
2�
(k � �i)

�
= �i��

�
1p
2�
(k � �i)

�
so that i best response to sk�i (��i) is

sbri
�
sk�i (��i) j�i

�
=

8<: Invest if �i > �
�

1p
2�
(k � �i)

�
Not Invest if �i � �

�
1p
2�
(k � �i)

�
:

Note that the equation

�i � �
�

1p
2�
(k � �i)

�
= 0
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has a unique solution in �i since �
�

1p
2�
(k � �i)

�
is strictly decreasing

in �i: Let
b (k)

be the unique value of �i solving the previous equation. Moreover
�
�

1p
2�
(k � �i)

�
is strictly increasing in k. Then, the best response

of player i is to follow a cut-o¤ strategy with threshold equal to b (k),
increasing in k :

sbri
�
sk�i (��i) j�i

�
=

�
Invest if �i > b (k)

Not Invest if �i � b (k) :

Note that

1.

k ! �1) �

�
1p
2�
(k � �i)

�
! 0) b (k)! 0;

i.e. if player 2 always invest, player 1 will invest if the signal �i is
positive;

2.

k !1) �

�
1p
2�
(k � �i)

�
! 1) b (k)! 1;

i.e. if player 2 never invest, player 1 will invest if the signal �i is
greater than 1;

3.
k =

1

2
) b (k) =

1

2

since when �i = 1
2
then E (�j�i) = 1

2
; which implies that according

to i�s beliefs, player �i will not invest with probability 1
2
:

4. by total implicit di¤erentiation

b0 (k) =
1

1 +
p
2�

�
�

1p
2�
(k��i)

� 2 (0; 1)

where � is the density of the standard normal. This con�rms that
b (k) is strictly increasing in k; which implies that there is a unique
�threshold�equilibrium where each player uses a threshold of 1

2
:

The function b(�) is plotted in the following �gure:3

3Figure 3.1 in Morris-Shin 2003.
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Figure 1: The function b (k)

The unique equilibrium has both players investing if and only if they
observe a signal greater than 1=2. Actually, the strategy with threshold
1
2
is in fact the unique strategy surviving iterated deletion of (interim)

strictly dominated strategies, since a strategy si survives n rounds of
iterated deletion of strict dominated strategies if and only if

si (�i) =

�
Invest if �i > b

n (1)
Not Invest if �i � bn (0)

where

bn (k) =

n timesz }| {
b (b (:::b (k))):

We argue the second clause by induction (the argument for the �rst
clause is symmetric). The claim is true for n = 1, because Invest/Not
Invest is a dominant strategy if the expected value of � is greater than
1/less than 0. Moreover, suppose the claim is true for arbitrary n. If a
player knew that his opponent would choose action Not Invest if he had
observed a signal less than bn�1(1), his best response would always be to
choose action Not Invest if his signal was less than b(bn�1(1)). Because
b(�) is strictly increasing and has a unique �xed point at 1=2, bn(0) and
bn(1) both tend to 1=2 as n!1.
An alternative argument follows Milgrom and Roberts 1990: if a sym-

metric game with strategic complementarities has a unique symmetric
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Nash equilibrium, then the strategy played in that unique Nash equi-
librium is also the unique strategy surviving iterated deletion of strictly
dominated strategies.
The key intuition for this argument is that the uniform prior assump-

tion ensures that each player, whatever his signal, attaches probability 1
2

to his opponent having a higher signal and probability 1
2
to him having a

lower signal. This property remains true no matter how small the noise
is, but breaks discontinuously in the limit: when noise is zero, he attaches
probability 1 to his opponent having the same signal. The striking fea-
ture of this result is that no matter how small is, players�behavior is
in�uenced by the existence of the ex ante possibility that their opponent
has a dominant strategy to choose each action. Thus, a �grain of doubt�
concerning the opponent�s behavior has large consequences. Thus, the
probability that either individual invests is

�

� 1
2
� �
�

�
and, conditional on �, their investment decisions are independent.

3 Two by Two General Global Games

The previous result can be generalized to the class of two-player, two-
action games.

Example 3 Consider a generic 2�2 game:

2
L R

1 U �1; �2 �3; �4
D �5; �6 �7; �8

Game 3

Thus a vector � 2 R8 describes the payo¤s of the game and is drawn
from some distribution. For a generic choice of �, there are three possible
con�gurations of Nash equilibria:

1. a unique Nash equilibrium with both players using strictly mixed
strategies;

2. a unique strict Nash equilibrium with both players using pure
strategies;
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3. two pure strategy strict Nash equilibria and one strictly mixed
strategy Nash equilibrium.

In the last case, Harsanyi and Selten 1988 proposed the criterion of
risk dominance to select among the multiple Nash equilibria. Suppose
that (U;L) and (D;R) are strict Nash equilibria of the above game,
which requires

�1 > �5; �7 > �3; �2 > �4; �8 > �6:

Then (U;L) is a risk dominant equilibrium if

(�1 � �5) (�2 > �4) > (�7 � �3) (�8 � �6) :

Generically, exactly one of the two pure Nash equilibria will be risk
dominant.
Now consider the following incomplete information gameG (�). Each

player i observes a signal

�i = � + �"i

where the "i are eight-dimensional noise terms. Thus we have a class of
incomplete information games parameterized by � > 0: In the incomplete
information game G (�) ; a strategy for player i is a map of the following
type

si : R8 ! Ai; where A1 = fU;Dg ; A2 = fL;Rg :
Then Carlsson and van Damme (1993) study the distribution over action
pro�les in the game G (�), averaging across signal realizations, for any
given strategy pro�le of players in the game and any actual realization
of the payo¤s �:

Theorem 1 For any sequence of games G (�n) where �n ! 0 and any
sequence of equilibria of those games, the average play converges at al-
most all payo¤ realizations to the unique Nash equilibrium (if there is
one) and to the risk dominant Nash equilibrium (if there are multiple
Nash equilibria).

Carlsson and van Damme 1993 also generalize the argument from
the example described above to show that, if an action is part of a
risk dominant equilibrium or a unique strict Nash equilibrium of the
complete information game, then - for su¢ ciently small � - that action
is the unique action surviving iterated deletion of strictly dominated
strategies.
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The original analysis of Carlsson and van Damme 2003 relaxed the
assumption of common knowledge of payo¤s in a particular way: they
assumed that there was a common prior on payo¤s and that each player
observes a small conditionally independent signal of payo¤s. This is an
intuitively small perturbation of the game and this is the perturbation
that has been the focus of study in the global games literature. How-
ever, when the noise is small one can show that types in the perturbed
game are close to common knowledge types in the product topology on
the universal type space: that is, for each type t in the perturbed game,
there is a common knowledge type t0 such that type t and t0 almost
agree in their beliefs about payo¤s, they almost agree about their beliefs
about the opponents�beliefs, and so on up to any �nite level. Thus the
�discontinuity�in equilibrium outcomes in global games when noise goes
to zero is illustrating the same sensitivity to higher order beliefs of the
famous example of the electronic mail game by Rubinstein 1989. The
natural question to ask is then: how general is the phenomenon that
Rubinstein 1989 and Carlsson and van Damme 1993 identi�ed? That is,
for which games and actions is it the case that, under common knowl-
edge, the action is part of an equilibrium (and thus survives iterated
deletion of strictly dominated strategies) but for a type �close�to com-
mon knowledge of that game, that action is the unique action surviving
iterated deletion of strictly dominated strategies. Weinstein and Yildiz
2007 shows that this is true for every action surviving iterated deletion
of strictly dominated strategies in the original game. This observation
highlights the following fact:

Remark 2 the selections that arise in standard global games arise not
just because one relaxes common knowledge, but because it is relaxed in
a particular way:

1. the common prior assumption is maintained and outcomes are an-
alyzed under that common prior,

2. the noisy signal technology ensures particular properties of higher-
order beliefs, that is, that each player�s beliefs about how other
players�beliefs di¤er from his is not too dependent on the level of
his beliefs.

Summary 1 Carlsson and van Damme 1993 named their perturbed games
for the two player, two action case "global games" because all possible
payo¤ pro�les were possible. They showed that there was a general way
of adding noise to the payo¤ structure so that, as the noise went to zero,
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1. there was a unique action surviving iterated deletion of (interim)
dominated strategies, a limit uniqueness result

2. the action that got played in the limit was independent of the dis-
tribution of noise added, a noise independent selection result.

3.0.1 Comments on Strategic Uncertainty

In global games, the importance of the noisy observation of the under-
lying state lies in the fact that it generates strategic uncertainty, that
is, uncertainty about others�behavior in equilibrium, because of players�
uncertainty about other players� payo¤s. Thus, understanding global
games involves understanding how equilibria depend on players�uncer-
tainty about other players�payo¤s. But, clearly, it is not going to be
enough to know each player�s beliefs about other players�payo¤s. We
must also take into account each player�s beliefs about other players�
beliefs about his payo¤s, and further such higher-order beliefs. Players�
payo¤s and higher-order beliefs about payo¤s are the true primitives
of a game of incomplete information, not the asymmetric information
structure. In these introductory examples, we told an asymmetric in-
formation story about how there is a true state - the fundamentals - �
drawn from some prior and each player observes a signal of � generated
by some technology. But, our analysis of the resulting game implicitly
assumes that there is common knowledge of the prior distribution of �
and of the signaling technologies. It is hard to defend this assumption
literally when the original purpose was to get away from the unrealis-
tic assumption that there is common knowledge of the realization of �.
The classic arguments of Harsanyi (1967�1968) and Mertens and Zamir
(1985) tell us that we can assume common knowledge of some state space
without loss of generality. But such a common knowledge state space
makes sense with an incomplete information interpretation (a player�s
�type�is a description of his higher-order beliefs about payo¤s), but not
with an asymmetric information interpretation (a player�s �type� is a
signal drawn according to some ex ante �xed distribution). Thus, the
noise structures analyzed in global games are interesting because they
represent a tractable way of generating a rich structure of higher-order
beliefs. The analysis of global games represents a natural vehicle to il-
lustrate the power of higher-order beliefs at work in applications. But,
then, the natural way to understand the �trick�to global games analysis
is to go back and understand what is going on in terms of higher-order
beliefs.
Even if one is uninterested in the philosophical distinction between

incomplete information and asymmetric information, there is a sec-
ond reason why the higher-order beliefs literature may contribute to our
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understanding of global games. Even keeping a pure asymmetric in-
formation interpretation, we can calculate (from the prior distribution
over � and the signal technologies) the players�higher-order beliefs about
payo¤s. Statements about higher-order beliefs about payo¤s turn out to
represent a natural mathematical way of characterizing which properties
of the prior distribution and signal technologies matter for the results.
The pedagogical risk of emphasizing higher-order beliefs is that read-

ers may conclude that playing in the uniquely rational way in a global
game requires fancy powers of reasoning, some kind of hyperrationality
that allows them to reason to an arbitrarily high number of levels. We
emphasize that the fact that either the analyst or a player expresses
information about the game in terms of higher-order beliefs does not
make standard equilibrium concepts any less compelling and does not
suggest any particular view about how equilibrium behavior might be
arrived at. In particular, recall that there is a very simple heuristic that
will generate equilibrium behavior in symmetric binary action games.
If there is not common knowledge of the environment you are in, you
should hold di¤use beliefs about others�behavior. In particular, if you
are on the margin between your two actions, it seems reasonable to take
the agnostic view that you are equally likely to hold any rank in the pop-
ulation concerning your evaluation of the desirability of the two actions.
Thus, if other people behave like you, you should make your decision on
the assumption that the proportion of other players choosing each ac-
tion is uniformly distributed. This reasoning sound naive, but actually
generates a very simple heuristic for behavior that is consistent with the
unique rational behavior.

4 Global Games with Many Players and Many Ac-
tions

Carlsson and van Damme 1993 results do not extend in general to many
player many action games. Thus, in discussing known extensions, we
must distinguish which of their results extend. We start with an exam-
ple.

4.1 The Investment Game with Many Players
Example 4 Consider a game with the following characteristics:

1. a continuum of players i 2 [0; 1]

2. who have to decide whether to invest or not, L 2 fInvest; Not Investg
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3. with payo¤

Ui (L; l) =

�
� + l � 1 L = Invest

0 L = Not Invest

where l is the proportion of other players choosing to invest.

4. The information structure is standard:

(a) each player i observes a private signal

�i = � + �"i

(b) where "i are identically and independently normally distrib-
uted with mean 0 and standard deviation 1

"i � N (0; 1)

(c) and
� � U (R) :

This game has the following solution.

Result 2 The unique strategy surviving iterated deletion of strictly dom-
inated strategies is

si (�i) =

�
Invest if �i >

1
2

Not Invest if �i � 1
2

as for the two player game.

Proof. We will brie�y sketch why this is the case. Consider a player i
who has observed signal �i and thinks that all his opponents are following
the threshold strategy with cuto¤ point k. Since E (�j�i) = �i; i will

assign probability �
�
k��ip
2�

�
to any given opponent observing a signal

less than k; which is also i0s expectation of the proportion of players
who observe a signal less than k; because the realization of the signals
are independent conditional on �. Thus, i0s expected payo¤ to investing
will be

�i � �
�
k � �ip
2�

�
;

as in the previous 2 � 2 example, and all the previous arguments go
through.
This argument shows the importance of keeping track of the layers

of beliefs across players, and as such may seem rather daunting from
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the point of view of an individual player. However, the equilibrium
outcome is also consistent with a "Laplacian" procedure that places far
less demands on the capacity of the players, and that seems to be far
removed from equilibrium of any kind.

Algorithm 1 The "Laplacian" procedure has the following three steps:

1. Estimate � from the signal �i

2. Postulate that l is distributed uniformly on the unit interval [0; 1]

3. Take the optimal action.

Proof. Since E (�j�i) = �i; the expected payo¤ to investing if l is uni-
formly distributed is �i� 1

2
, whereas the expected payo¤ to not investing

is zero. Thus, a player following this procedure will choose to invest if
and only if �i > 1

2
, which is identical to the unique equilibrium strategy

previously outlined.
The belief that l is distributed uniformly on the unit interval [0; 1] is

Laplacian in the sense that it represents a �di¤use�or sort of logic of �in-
su¢ cient reason�view on the actions of other players in the game. The
previous results shows that an apparently naive and simplistic strategy
coincides with the equilibrium strategy. This is not an accident. There
are good reasons why the Laplacian action is the correct one in this
game, and why it turns out to be an approximately optimal action in
many binary action global games. The key to understanding this feature
is to consider the following question asked by a player in this game:

Question 1 �My signal has realization �i. What is the probability that
proportion less than z of my opponents have a signal higher than mine?�

Answer 1 The answer to this question is crucial if everyone is using
the cuto¤ strategy, since the proportion of players who invest is equal to
the proportion whose signal is above E (�j�i) = �i. If the true state is �,
the proportion of players who receive a signal higher than �i is given by
1� �

�
�i��
�

�
, which is less than z if the state � is such that

1� �
�
�i � �
�

�
� z ) � � �i � ���1 (1� z) ;

that has probability, conditional on �i

�

�
�i � ���1 (1� z)� �i

�

�
= 1� z:
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Therefore the density of z is uniform over the unit interval. If �i is to
serve as the cuto¤ point of an equilibrium cuto¤ strategy, a player must
be indi¤erent between choosing to invest and not to invest given that
the proportion who invest is uniformly distributed on [0; 1]. Moreover,
even away from the switching point, the optimal action motivated by this
belief coincides with the equilibrium action, even though the (Laplacian)
belief may not be correct. Away from the cuto¤point, the density of the
random variable representing the proportion of players who invest will
not be uniform. However, as long as the payo¤ advantage to investing
is increasing in �, the Laplacian action coincides with the equilibrium
action. Thus, the naive procedure outlined in the algorithm gives the
correct prediction as to what the equilibrium action will be.
In most of this note, we will focus on games with a continuum of play-

ers, however as suggested by examples 2 and 4, the qualitative analysis
is often very similar irrespective of the number of players.

Result 3 The analysis of the continuum player game with linear pay-
o¤s applies equally well to any �nite number of players (where each
player observes a signal with an independent normal noise term): in-
dependent of the number of players, the cuto¤ threshold in the unique
equilibrium is 1

2
:

However, let we stress an interesting di¤erence.

Remark 3 A distinctive implication of the in�nite player case is that
the outcome is a deterministic function of the realized state. In par-
ticular, once we know the realization of �, we can calculate exactly the
proportion of players who will invest.

Result 4 In the investment game with a continuum of players, in the
unique equilibrium with cuto¤ threshold 1

2
; the proportion of players who

will invest is exactly

b� (�) = 1� �� 1
2
� �
�

�
which also holds when the �nite number of players increase to 1:

Proof. Consider the investment game with N players. Then, the prob-
ability that at least proportion � out of the N players invest when the
realized state is � is

� (�;�;N) =
X
n��N

�
N

n

��
�

� 1
2
� �
�

��N�n �
1� �

� 1
2
� �
�

��n
:
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Note that

lim
N!1

� (�;�;N) =

(
1 if � < b� (�)
0 if � > b� (�) :

5 A General Approach to Symmetric Binary Ac-
tion Global Games with a Continuum of Players

5.1 Introduction
Before going into the details, let we make some general considerations
referring to the literature.

5.1.1 Global Games with Limit Dominance Property or Su-
permodular Payo¤s

Frankel, Morris and Pauzner 2003 consider games with strategic com-
plementarities. Rather than allowing for all possible payo¤pro�les, they
restrict attention to a one-dimensional set of possible payo¤ functions,
or states, which are ordered so that higher states lead to higher ac-
tions. The idea of global games is captured by a �limit dominance�
property: for su¢ ciently low values of �, each player has a dominant
strategy to choose his lowest action, and for su¢ ciently high values of �,
each player has a dominant strategy to choose his highest action. Under
these restrictions, they are able to present a complete analysis of the case
with many players, asymmetric payo¤s and many actions. In particular,
a limit uniqueness result holds: if each player observes the state with
noise, and the size of noise goes to zero, then in the limit there is a
unique strategy pro�le surviving iterated deletion of strictly dominated
strategies. Note that while Carlsson and van Damme 1993 required
no strategic complementarity, when there are multiple equilibria in a
two-player, two-action game - the interesting case for Carlsson and van
Damme�s analysis - there are automatically strategic complementarities.
Within this class of games where limit uniqueness holds, Frankel, Morris
and Pauzner 2003 also provide su¢ cient conditions for �noise indepen-
dent selection�, i.e. which action gets played in the limit as noise goes
to zero does not depend on the shape of the noise. They show that a
generalization of the potential maximizing action pro�le is su¢ cient for
noise independent selection. This su¢ cient condition encompasses the
risk dominant selection in two player binary action games; the selection
of the �Laplacian�action (a best response to a uniform distribution over
others�actions) in many player, binary action games. Frankel, Morris
and Pauzner 2003 also provide an example of a two-player, four-action,
symmetric payo¤ game where noise independent selection fails: there
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is a unique limit as the noise goes to zero, but the nature of the limit
depends on the exact distribution of the noise, while Carlsson 1989 gave
a three- player, two-action example in which noise independent selec-
tion failed. Also Corsetti et al. 2004 describe a global games model
of currency crises, where there is a continuum of small traders and a
single large trader, where the equilibrium selected as noise goes to zero
depends on the relative informativeness of the large and small traders�
signals, i.e. an application where noise-independent selection fails.

5.2 Uniform Prior and Private Values
In this subsection we deal with the case where there is a uniform prior
on the initial state, and each player�s signal is a su¢ cient statistic for
how much they care about the state, called by Morris-Shin 2006 the
private values case. Under this assumptions, the analysis is especially
clean, it is possible to prove a uniqueness result and to characterize the
unique equilibrium independent of both the structure and size of the
noise in players�signals. In the subsequent subsection, we review how
the analysis can be extended to deal with general priors and payo¤s that
depend on the realized state.

Example 5 Consider the following class of games, characterized as fol-
lows:

1. There is a continuum of players, i 2 [0; 1] ;

2. Each player has to choose an action a 2 f0; 1g;

3. All players have the same payo¤ function

u : f0; 1g � [0; 1]� R! R

where u(a; l; �i) is i0s player�s payo¤ if she chooses action a, a
proportion l of the other players choose action 1, and her �private
signal� is �i.

Remark 4 Since i0s payo¤ is independent of which of the opponents
choose action 1, to analyze best responses, it is enough to know the payo¤
gain from choosing one action rather than the other. Thus, the utility
function is parameterized by a function

� : [0; 1]� R! R such that �(l; �i) � u(1; l; �i)� u(0; l; �i):

De�nition 1 An action is the Laplacian action if it is a best response
to a uniform prior over the opponents�choice of action. Thus,
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1. a = 1 is the Laplacian action at �i ifZ 1

0

�(l; �i)dl =

Z 1

0

u(1; l; �i)�
Z 1

0

u(0; l; �i) > 0

2. a = 0 is the Laplacian action at �i ifZ 1

0

�(l; �i)dl =

Z 1

0

u(1; l; �i)�
Z 1

0

u(0; l; �i) < 0:

Remark 5 Generically, a game with a continuum of players, symmetric
payo¤, and two-action will have exactly one Laplacian action.

Assumption 1 On players� information, the assumptions are the
following:

I.1 a state � 2 R is drawn according to the improper uniform density
on the real line

� � U (R) ;

I.2 player i observes a private signal

�i = � + �"i

with � > 0;

I.3 "i is a noise distributed on R according to a continuous density
f (�) ; possibly non symmetric and with mean di¤erent from 0.

Result 5 Even if the prior is improper, the conditional density function
of �j�i is well de�ned and is�

1

�

�
f

�
�i � �
�

�
:4

Assumption 2 The players�payo¤s satisfy the following properties

P.1 Action Monotonicity: � (l; �) is nondecreasing in l; i.e. the
players actions are strategic complements;

P.2 State Monotonicity: � (l; �) is nondecreasing in �; i.e. a player�s
optimal action is increasing in the unknown state;

4See Hartigan 1983.
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P.3 Strict Laplacian State Monotonicity: there exists a unique ��

solving
R 1
l=0
�(l; ��)dl = 0; i.e. there is at most one crossing for a

player with Laplacian beliefs;

P.4 Limit Dominance: there exist � 2 R and � 2 R, such that

(a) � (l; �i) < 0 for all l 2 [0; 1] and for all �i � �; i.e. action
a = 0 is a dominant strategy for su¢ ciently low signals;

(b) � (l; �i) > 0 for all l 2 [0; 1] and for all �i � �; i.e. action
a = 1 is a dominant strategy for su¢ ciently high signals;

P.5 Continuity:
R 1
l=0
g (l)�(l; �i)dl is continuous with respect to �i

and density g with respect to the weak topology; therefore the payo¤
function might be discontinuous at one value of l:

De�nition 2 Let de�ne the game satisfying these assumptions as G� (�) :

Then it is possible to prove the following result.

Proposition 1 In game G� (�) ; there is essentially a unique iterated
strictly undominated strategy pro�le (s�i )i2[0;1] such that

8i 2 [0; 1] s�i (�i) =

�
0 if �i < �

�

1 if �i > �
� where �� satis�es

Z 1

0

� (l; ��) dl = 0:

Proof. The key idea of the proof is that, with a uniform prior on �,
observing �i gives no information to a player on her ranking within the
population of signals. Thus, she will have a uniform belief over the
proportion of players who will observe higher signals. Formally, write
��� (�i; k) for the expected payo¤ gain by choosing action 1 for a player
who has observed a signal �i and knows that all other players will choose
action 0 if they observe signals less than k:

��� (�i; k) =

1Z
�1

�
1

�

�
f

�
�i � �
�

�
�

�
1� F

�
k � �
�

�
; �i

�
d�:

Note that ��� (�i; k) is continuous in �i and k, increasing in �i, and de-
creasing in k, ��� (�i; k) < 0 if �i < � and ��� (�i; k) > 0 if �i > �:
Working by induction, we argue that a strategy survives n rounds of
iterated deletion of strictly interim dominated strategies if and only if

8i 2 [0; 1] s�i (�i) =

�
0 if �i < �n
1 if �i > �n
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where �
0
= �1; �0 =1; and �n; �n are de�ned inductively by

�
n+1

= min
n
�i : �

�
�

�
�i; �n

�
= 0
o

�n+1 = max
�
�i : �

�
�

�
�i; �n

�
= 0
	
:

Suppose the claim was true for n. By strategic complementarities, if
action1 were ever to be a best response to a strategy surviving n rounds,
it must be a best response to the cuto¤ strategy with cuto¤ �

n
and

�
n+1

is de�ned to be the lowest signal where this occurs. Similarly,
if action 0 were ever to be a best response to a strategy surviving n
rounds, it must be a best response to the cuto¤ strategy with cuto¤ �n
and �n+1 is de�ned to be the highest signal where this occurs. Note that
�
n
and �n are, respectively, increasing and decreasing sequences, because

�
0
= �1 < � < �

1
, �0 = 1 > � > �1 and �

�
� (�i; k) is increasing in �i

and decreasing in k. Thus,

lim
n!1

�
n
= � and lim

n!1
�n = �:

Because of the continuity of ���;

���
�
�; �
�
= 0 = ���

�
�; �
�
:

Then, we should now show that �� is the unique solution to the equation
��� (�i; �i) = 0: To prove it, let denote by 	

�
� (l; �i; k) the probability that

a player assigns to proportion less than l of the other players observing
a signal greater than k, if he has observed signal �i. Note that if the
true state is �, the proportion of players observing a signal greater than
k is 1� F

�
k��
�

�
. This proportion is less than l if � � k � �F�1 (1� l).

Therefore

	�� (l; �i; k) =

Z k��F�1(1�l)

�1

1

�
f

�
�i � �
�

�
d� =

=

Z 1

�i�k
�
+F�1(1�l)

f (z) dz = 1� F
�
�i � k
�

+ F�1 (1� l)
�

where z = �i��
�
: Note that if �i = k, then 	�� (l; �i; k) = l; i.e. 	

�
� (�; �i; k)

is the identity function, so it coincides with the cumulative distribution
function of the uniform density. Thus,

��� (�i; �i) =

Z 1

0

��� (l; �i) dl:

Then by Strict Laplacian State Monotonicity there exists a unique ��

solving ��� (�i; �i) =
R 1
l=0
� (l; ��) dl = 0:
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5.2.1 General Prior and Common Values

In this subsection we deal with the case with general priors and payo¤s
that depend on the realized state.

Example 6 Consider the following class of games, characterized as fol-
lows:

1. There is a continuum of players, i 2 [0; 1] ;

2. Each player has to choose an action a 2 f0; 1g;

3. All players have the same payo¤ function

u : f0; 1g � [0; 1]� R! R

where u(a; l; �) is i0s player�s payo¤ if she chooses action a, a pro-
portion l of the other players choose action 1, and the realized state
is �.

Remark 6 As before, i0s payo¤ is independent of which of his oppo-
nents choose action 1, thus to analyze best responses, it is enough to
know the payo¤ gain from choosing one action rather than the other.
Thus, the utility function is parameterized by a function

� : [0; 1]� R! R such that � (l; �) � u(1; l; �)� u(0; l; �):

Assumption 3 On players� information, the assumptions are the
following:

I.1* a state � 2 R is drawn according to a continuously di¤erentiable
strictly positive density on the real line R; p (R):

� � p (R) ;

I.2 player i observes a private signal

�i = � + �"i

with � > 0;

I.3 "i is a noise distributed on R according to a continuous density
f (�) ; possibly non symmetric and with mean di¤erent from 0.

I.4 Finite Expectations of Signals:
R1
�1 zf (z) dz is well de�ned:
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Remark 7 Assumption I.4 simply requires that the distribution of noise
is integrable, while assumption I.1* is clearly a generalization of previous
assumption I.1.

We must impose two extra technical assumptions on players�payo¤
functions.

Assumption 4 Players�payo¤s satisfy the following conditions:

P.4* Uniform Limit Dominance: there exist � 2 R, a � 2 R, and a
strictly positive � 2 R++ such that

(a) � (l; �) < �� for all l 2 [0; 1] and for all � � �;
(b) � (l; �) > � for all l 2 [0; 1] and for all � � �:

Remark 8 Assumption P.4* strengthens assumption P.4 of Limit Dom-
inance by requiring that the payo¤ gain to choosing action 0 is uniformly
negative for su¢ ciently low values of �, and the payo¤ gain to choosing
action 1 is uniformly positive for su¢ ciently high values of �.

De�nition 3 Let de�ne the game satisfying assumptions P.1, P.2, P.3,
P.4*, P.5 and I.6 as G (�) :

Then it is possible to prove the following result.

Proposition 2 Let �� be de�ned solving
R 1
0
� (l; ��) dl = 0: For any � >

0, there exists � > 0 such that for all � � �, if strategy si survives
iterated deletion of strictly dominated strategies in the game G (�) ; then

8i 2 [0; 1] si (�i) =

�
0 if �i < �

� � �
1 if �i > �

� + �:

Proof. See Morris and Shin 2006.

5.2.2 Comments and Possible Generalizations

Assumptions P.1 and P.2 represent very strong monotonicity assump-
tions: P.1 requires that each player�s utility function is supermodular in
the action pro�le, whereas P.2 requires that each player�s utility func-
tion is supermodular in his own action and the state. Vives (1990)
showed that the supermodularity property P.2 of complete information
game payo¤s is inherited by the incomplete information game. Thus,
the existence of a largest and smallest strategy pro�le surviving iterated
deletion of dominated strategies when payo¤s are supermodular, noted
by Milgrom and Roberts (1990), can be applied also to the incomplete
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information game. The state monotonicity assumption P.2 implies, in
addition, that the largest and smallest equilibria consist of cuto¤ strate-
gies. Once we know that we are interested in cuto¤ strategies, the very
weak assumption P.3 is su¢ cient to ensure the equivalence of the largest
and smallest equilibria and thus the uniqueness of equilibrium.

Question 2 Can one dispense with the full force of the supermodular
payo¤s assumption P.1?

Answer 2 Unfortunately, as long as P.1 is not satis�ed at the cuto¤
point ��; i.e., � (l; ��) is decreasing in l over some range, then one can
�nd a problematic noise distribution f (�) such that the symmetric cuto¤
strategy pro�le with cuto¤ point �� is not an equilibrium, and thus there
is no cuto¤ strategy equilibrium. To obtain positive results, one must
either impose additional restrictions on the noise distribution or relax
P.1 only away from the cuto¤ point.

Global Games without Supermodular Payo¤s but satisfying
a Single Crossing Property More limited results are available on
global games without supermodular payo¤s. In many applications - such
as bank runs - there are some strategic complementarities but payo¤s
are not supermodular everywhere: conditional on enough people run-
ning on the bank to cause collapse, a player is better o¤ if she run but
few people run and share in the liquidation of the bank�s assets. An
important paper of Goldstein and Pauzner 2005 has shown equilibrium
uniqueness for �bank run payo¤s�- satisfying a single crossing property
- with uniform prior and uniform noise. This analysis has been followed
in a number of applications. They establish that there is a unique equi-
librium in threshold strategies and there are no non-threshold equilibria.
However, their analysis does not address the question of which strategies
survive iterated deletion of strictly dominated strategies.
Morris and Shin 2003 discuss how the existence of a unique thresh-

old equilibrium can be established more generally under a single crossing
property on payo¤s and a monotone likelihood ratio property on signals
(not required for global games analysis with supermodular payo¤s); how-
ever, these arguments do not rule out the existence of non - monotonic
equilibria. Results of van Zandt and Vives 2007 can be used more gen-
erally to establish the existence of a unique monotone equilibrium under
weaker conditions than supermodularity.

Generalizations and Noise Distribution In this paragraph we fol-
low Athey (2001) and (2002), where she provides a general description of
how monotone comparative static results can be preserved in stochastic
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optimization problems, when supermodular payo¤ conditions are weak-
ened to single crossing properties, but signals are assumed to be su¢ -
ciently well behaved (i.e., satisfy a monotone likelihood ratio property).
We follow Morris and Shin (2006) adapting her results to the global
games setting, using two new assumptions.

Assumption 5 P.1* Action Single Crossing: For each � 2 R, there
exists l� 2 [�1:1] such that � (l; �) < 0 if l < l� and � (l; �) < 0
if l > l�.

Assumption 6 I.5 Monotone Likelihood Ratio Property: If �i >

�i, then
f(�i��)
f(�i��)

is increasing in �.

De�nition 4 Denote by eG (�) the incomplete information game with a
uniform prior satisfying P.1*, P.2, P.3, P.4, P.5, and I.5.

Then it is possible to prove the following result.

Proposition 3 Let �� be de�ned solving
R 1
0
� (l; ��) dl = 0: Then, the

game eG (�) ; has a unique (symmetric) cuto¤ strategy equilibrium,such
that

8i 2 [0; 1] si (�i) =

�
0 if �i < �

�

1 if �i > �
�:

Proof. See Morris and Shin 2006.

Remark 9 Notice that this result does not show the nonexistence of
other, non-monotonic, equilibria. Additional arguments are required to
rule out non-monotonic equilibria.

Generalizations and Payo¤ Properties It is also possible to gen-
eralize assumption P.1 away from ��:

De�nition 5 Let g (�) and h (�) be densities on the interval [0; 1]; then
g stochastically dominates h; g � h if

R l
0
g (z) dz �

R l
0
h (z) dz for all

l 2 [0; 1] :

Let g (�) be the uniform density on [0; 1] ; so that g (l) = 1 for all
l 2 [0; 1] : Then, consider the following generalization of P.1, P.2 and P.3.

Assumption 7 P.7 There exists a �� which solves
R 1
0
� (l; ��) dl = 0

such that
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(a)
R 1
0
g (l)� (l; �) dl � 0 for all � � �� and g � g; with strict

inequality if � > ��;

(b)
R 1
0
g (l)� (l; �) dl � 0 for all � � �� and g � g; with strict

inequality if � < ��:

Remark 10 Note that P.1, P.2 and P.3 imply P.7, but P.7 allows some
failure of P.1 away from ��:

Remark 11 P.7 implies that � (l; ��) is nondecreasing in l:

De�nition 6 Let de�ne the game satisfying these assumptions as G (�) :

Then it is possible to prove the following results.

Proposition 4 In game G (�) ; there is essentially a unique iterated
strictly undominated strategy pro�le (s�i )i2[0;1] such that

8i 2 [0; 1] s�i (�i) =

�
0 if �i < �

�

1 if �i > �
� where �� satis�es

Z 1

0

� (l; ��) dl = 0:

Proof. See Morris-Shin 2006.

Proposition 5 Let �� be de�ned solving
R 1
0
� (l; ��) dl = 0: . For any

� > 0, there exists � > 0 such that for all � � �, if strategy si survives
iterated deletion of strictly dominated strategies in the game G (�) ; then

8i 2 [0; 1] si (�i) =

�
0 if �i < �

� � �
1 if �i > �

� + �:

Proof. See Morris and Shin 2006.

6 Ine¢ ciency of Equilibrium Outcomes in Global
Games

Previous results deliver strong negative conclusions about the e¢ ciency
of equilibrium outcomes in global games.

Result 6 In general, in global games the equilibrium outcomes are not
e¢ cient.

Proof. In the limit, in equilibrium all players will be choosing action 1
when the state is � if Z 1

0

� (l; �) dl > 0:
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On the other hand, e¢ ciency requires to choose action 1 at state � if

u(1; 1; �) > u(0; 0; �)

and these conditions will not coincide in general. For example, in the
investment example, we had

u(1; l; �) = � + l � 1 and u(0; l; �) = 0

and thus
� (l; �) = u(1; l; �)� u(0; l; �) = � + l � 1

that implies Z 1

0

� (l; �) dl =

Z 1

0

(� + l � 1) = � � 1
2
:

So in the limiting equilibriumZ 1

0

� (l; �) dl > 0, � >
1

2
;

i.e. both players will be investing if the state � is at least 1
2
; although

it is e¢ cient for them to be investing if the state is at least 0.
The analysis of the unique noncooperative equilibrium serves as a

benchmark describing what will happen in the absence of other consid-
erations. In practice, repeated play or other institutions will often allow
players to do better.
Consider brie�y what happens in the game if players were allowed to

make cheap talk statements about the signals that they have observed in
the investment example. The arguments here follow Baliga and Morris
(2000).
For this exercise, it is most natural to consider a �nite player case,

thus let consider the two-player investment example. The investment
example as formulated has a nongeneric feature, which is that if a player
plans not to invest, he is exactly indi¤erent about which action his op-
ponent will take. To make the problem more interesting, let us perturb
the payo¤s to remove this tie.

Example 7 Let consider a parametric class of 2� 2 games, G (�; �) ;
of the following type:

2
Invest Not Invest

1 Invest � + �; � + � � � 1; �
Not invest �; � � 1 0; 0

Game G (�)
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Thus, each player receives a small payo¤ � (which may be positive
or negative) if the other player invests, independent of his own action.
This change does not in�uence each player�s best responses, and the
analysis of this game in the absence of cheap talk is unchanged by the
payo¤ change. But, observe that if � � 0, there is an equilibrium of
the game with cheap talk, where each player truthfully announces his
signal, and invests if the (common) expectation of � conditional on both
announcements is greater than ��; and this gives the e¢ cient outcome.
On the other hand, if � > 0, then each player would like to convince
the other to invest even if he does not plan to do so. In this case, there
cannot be a truth-telling equilibrium where the e¢ cient equilibrium is
achieved, although there may be equilibria with some partially revealing
cheap talk that improves on the no cheap talk outcome.

7 Public and Private Signals

To understand the e¤ects of public signals for global games, consider the
Investment Game with a continuum of players previously analyzed with
private information only.

Example 8 Consider a game with the following characteristics:

1. a continuum of players i 2 [0; 1]

2. who have to decide whether to invest or not, L 2 fInvest; Not Investg

3. with payo¤

Ui (L; l) =

�
� + l � 1 L = Invest

0 L = Not Invest

where l is the proportion of other players choosing to invest.

4. The information structure is the following:

(a) each player i observes a private signal

�i = � + �"i

(b) where "i are identically and independently normally distrib-
uted with mean 0 and standard deviation 1

"i � N (0; 1)
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(c)
� � N (y; �)

where

(d) y is a public signal.

From standard statistics, we get the following result.

Result 7

E (�j�i) =
�2y + � 2�i
�2 + � 2

Consider a cuto¤ strategy

s (E (�j�i)) =
�

Invest if E (�j�i) > �
Not Invest if E (�j�i) � �:

De�nition 7 Let de�ne

e
 (�; �) = �2

� 4

�
�2 + � 2

�2 + 2� 2

�
:

Then, Morris and Shin (2006) prove the following result.

Proposition 6 The game has a symmetric switching strategy equilib-
rium with cuto¤ � if � solves the equation

� = �
�pe
 (�� y)� ;

then

1. if e
 (�; �) � 2�, there is a unique value of � solving the previous
equation and the strategy with cuto¤ � is the essentially unique
strategy surviving iterated deletion of strictly dominated strategies;

2. if e
 (�; �) > 2�� then (for some values of y) there are multiple
values of � solving the previous equation and multiple symmetric
cuto¤ strategy equilibria.

Proof. See Morris and Shin (2006) for a full proof, here we just sketch
the intuition. From standard statistics, we know that

�j�i � N
 
�2y + � 2�i
�2 + � 2

;

r
�2� 2

�2 + � 2

!
:
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De�ne

� := E (�j�i) =
�2y + � 2�i
�2 + � 2

:

Moreover, any other player�s signal, �0j; is distributed as follows

�0j � N
 
�;

r
2�2� 2 + �4

�2 + � 2

!

since
�0j = � + �":

Suppose that all other players follow a cuto¤ strategy such that

s
�
E
�
�j�0j

��
=

�
Invest if E

�
�j�0j

�
> �

Not Invest if E
�
�j�0j

�
� � )

) s
�
�0j
�
=

(
Invest if

�2y+�2�0j
�2+�2

> �

Not Invest if
�2y+�2�0j
�2+�2

� �:
Thus, player i assigns probability

1� �

0@�� � + �2

�2
(�� y)q

2�2�2+�4

�2+�2

1A
to j investing. Then, i0s expectation of the proportion of opponents
investing must be equal to the probability he assigns to any one investing,
so that i0s expected payo¤ is

v
�
�; �
�
=

�
E (� + l � 1) if Invest

0 if Not Invest
=

8>><>>:� � �
0@���+�2

�2
(��y)r

2�2�2+�4

�2+�2

1A if Invest

0 if Not Invest.

Note that v
�
�; �
�
is increasing in �, therefore there exists a symmetric

equilibrium with cuto¤ at � if

v� (�) := v (�; �) = 0

i.e. if

v� (�) = �� �

0@ �2

�2
(�� y)q
2�2�2+�4

�2+�2

1A = �� � (p
 (�� y)) = 0:
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Note that the solution to this equation depends on the values of 
;
which is large if � � � ; i.e. if public information is more informative
than private information, small if � � �; i.e. if public information is
less informative than private information. In particular

dv� (�)

d�
= 1�p
� (p
 (�� y)) :

Since �; being the density of the standard normal distribution, has the
maximum for �i = 0; at value 1p

2�
; then


 � 2� ) dv� (�)

d�
= 1�p
� (p
 (�� y)) � 0

so that the equation
v� (�) = 0

has a unique solution for � = y: on the other hand


 > 2� ) dv� (�)

d�

����
�=y

< 0

so that the equation
v� (�) = 0

has two other solutions:
The following picture plots the two regions in the space (� 2; �2) :
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Suppose e
 (�; �) � 2�, then
� = �

�pe
 (�� y)�
has a unique solution and can be solved for y :

y = �� 1pe
��1 (�) ;
which is decreasing in � since

dy

d�
= 1� 1pe
 1

� (��1 (�))
� 0, 1

� (��1 (�))
�
pe


which is always satis�ed when e
 � 2�: In particular, the smaller e
 (�; �) ;
the steeper the function, which is intuitive since e
 is directly related to
the informativeness of the public versus the private signal. Since player
i would invest if � � �; then we can use the previous map substituting
� for �; getting players�investment if and only if

y � � � 1pe
��1 ��� ;
which has the following interesting implications.

Corollary 1 Suppose e
 (�; �) � 2�, then
1. if E (�j�i) < 0; then in equilibrium for any y it is optimal not to
invest;

2. if E (�j�i) > 1; then in equilibrium for any y it is optimal to invest;

3. if E (�j�i) 2 [0; 1] ; then in equilibrium the higher y, the more likely
it is optimal to invest. Thus, the players will always invest for
su¢ ciently high y, and not invest for su¢ ciently low y. This im-
plies in particular that changing y has a larger impact on a player�s
action than changing his private signal (controlling for the infor-
mativeness of the signals), the �publicity� e¤ect.

7.1 The Role of Public and Private Information
To explore the strategic impact of public information, we examine how
much a player�s private signal must adjust to compensate for a given
change in the public signal. Consider the cuto¤ equation

� = �
�pe
 (�� y)�
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when

� = � =
�2y + � 2�i
�2 + � 2

;

i.e.
�2y + � 2�i
�2 + � 2

= �

�pe
 ��2y + � 2�i
�2 + � 2

� y
��

:

Considering this equation as an implicit function �i (y), we have

d�i (y)

dy
= �

�2

�2
+
pe
� (�)

1�
pe
� (�)

which measures how much the private signal would have to change to
compensate for a change in the public signal leaving the player indif-
ferent between investing or not investing. On the other hand, if we
ignore strategic e¤ect of a change in y; the private signal has a di¤erent
substitution ratio that can be derived maintaining constant

E (�j�i) = � =
�2y + � 2�i
�2 + � 2

so that
d�i
dy

= ��
2

� 2
:

The ratio between these two substitution ratio de�nes the publicity
multiplier

� =
1 + �2

�2

pe
� (�)
1�

pe
� (�)
which is increasing in e
; which is intuitive since e
 is directly related to
the informativeness of the public versus the private signal. However,
remember that e
 is bounded above by 2�; otherwise we go into the
regions of multiple equilibria.
There is plentiful anecdotal evidence that in settings where coordi-

nation is important, public signals play a role in coordinating outcomes
that exceed the information content of those announcements. For exam-
ple, �nancial markets apparently �overreact�to announcements from the
Federal Reserve Board and public announcements in general. If market
participants are concerned about the reaction of other participants to the
news, the �overreaction�may be rational and determined by the type of
equilibrium logic of our example. Further evidence for this is brie�ngs on
market conditions by key players in �nancial markets using conference
calls with hundreds of participants. Such public brie�ngs have a larger
impact on the market than bilateral brie�ngs with the same information,
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because they automatically convey to participants not only information
about market conditions, but also valuable information about the beliefs
of the other participants.

8 Dynamic Global Games

8.1 Recurring Random Matching
This approach has been developed in Burdzy, Frankel, and Pauzner
(2001) and Frankel and Pauzner (1999), then applied in Frankel and
Pauzner (2000) and Levin (2009).
A continuum of players are periodically randomly matched in a two-

player, two-action game, for simplicity suppose it is the game of example
2.

Example 9 Consider a parametric class of games, G (�) ; of the follow-
ing type:

2
Invest Not Invest

1 Invest �; � � � 1; 0
Not invest 0; � � 1 0; 0

Game G (�)

In particular suppose that

Hypothesis 2 1. the publicly observed common payo¤ parameter
evolves through time according to some random process;

2. each player can only occasionally alter his behavior: revision op-
portunities arrive according to a Poisson process and arrive slowly
relative to changes in the game�s payo¤s.

Result 8 Under certain conditions on the noise process (roughly equiv-
alent to the su¢ ciently uniform prior conditions in global games), there
is a unique equilibrium where each player invests when � � 1

2
and not

when � � 1
2
:
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8.2 Overlapping Generation Global Games
Levin (2001) describes another approach:

1. At discrete time t, player t chooses an action;

2. t payo¤ may depend on the actions of players choosing before or
after t, but also depends on a payo¤ parameter �,

3. � is publicly observed and evolves according to a random walk.

Result 9 If players act as if they cannot in�uence or do not care about
the action of the decision maker in the next period, then under weak
monotonicity conditions (a player�s best response is increasing in others�
actions and the payo¤ parameter) and limit dominance conditions (the
highest (lowest) action is a dominant strategy for su¢ ciently high (low)
values of �), there is a unique equilibrium.

The no in�uence assumption makes sense if there are in fact a con-
tinuum of players at each date or if actions are observed only with a
su¢ ciently long lag.

8.3 Recurring Incomplete Information
Consider the following example, with in�nitely many periods

t 2 N:

Example 10 Consider a game with the following characteristics:

1. a continuum of players i 2 [0; 1]

2. who have to decide whether to invest or not, L 2 fInvest; Not Investg

3. with payo¤

Ui (L; l) =

�
� + l � 1 L = Invest

0 L = Not Invest

where l is the proportion of other players choosing to invest.

4. The information structure is the following:

(a) �t follow a random walk,such that

�t = �t�1 + �t

where
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(b) �t is independently and normally distributed

�t � N (0; �)

(c) in each period t, the players observes

i. a public signal �t�1; and
ii. a private signal

�it = �t + "it

where
iii. "it is independently and normally distributed

"it � N (0; �) :

This dynamic game represents a crude way of embedding the static
global games analysis in a dynamic setting. In particular, each period�s
play of this dynamic game can be analyzed independently and is exactly
equivalent to the public signals model examined previously, where

� �t�1 is the public signal

� �it is player i �s private signal.

8.4 Herding Models
In the herding models of Banerjee (1992) and Bikhchandani, Hirshleifer,
and Welch (1992), players sequentially make some discrete choice. Play-
ers do not care about each other�s actions directly, but they have private
information, and so each player may partially learn the information of
players who choose before him. But, if a number of early-moving play-
ers happen to observe signals favoring one action, late-moving players
may start ignoring their own private information, leading to ine¢ cient
herding because of the negative informational externality.
Herding models share with global game models the feature that out-

comes are highly sensitive to �ne details of the information structure.
However, it is important to note that the mechanisms are quite di¤erent.
The global games analysis is driven by strategic complementarities and
the highly correlated signals generated by the noisy observations technol-
ogy. However, sensitivity to the information structure arises in a purely
static setting. The herding stories have no payo¤ complementarities and
simple information structures, but rely on sequential choice.
Dasgupta (2001) analyzes a simple model where it is possible to see

both kinds of e¤ects at work. A �nite set of players decide sequentially
(in an exogenous order) whether to invest or not. Investment conditions
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are either bad (when each player has a dominant strategy to not invest)
or good (in which case it pays to invest if all other players invest). Each
player observes a signal from a continuum, with high signals implying
a higher probability that investment conditions are good. All equilibria
in this model are cuto¤ equilibria: each player invests only if all pre-
vious players invested and his private signal exceeds some cuto¤. Such
equilibria encompass herding e¤ects: previous players�decisions to in-
vest convey positive information to later players and make it more likely
that they will invest. They also encompass higher-order belief e¤ects:
an increase in a player�s signal makes it more likely that he will invest
both because he thinks it more likely that investment conditions are
good and because he thinks it more likely that later players will observe
high signals and choose to invest.

8.5 Public Signals and Dynamic Games
Complete information models are often used in applied economic analy-
sis for tractability, assuming that the assumption of common knowledge
of game payo¤s capture the essence of the social, political or economic
problem. Presumably there is not in fact common knowledge of pay-
o¤s, and if asymmetries of information are not the focus of the economic
analysis, this assumption may seem harmless. However, complete infor-
mation games often have multiple equilibria, and policy analysis - and
comparative statics more generally - are hard to carry out in multiple
equilibrium models.
The global games analysis has highlighted how natural relaxations

of the common knowledge assumptions often lead to intuitive selections
of a unique equilibrium. This suggests these ideas might be useful in
applications. Fukao 1994 and Morris and Shin 1995 were two early pa-
pers that pursued this agenda. The latter paper - published as Morris
and Shin 1998 - was an application to currency crises, where the existing
literature builds on a dichotomy between �fundamentals-driven�models
and multiple equilibrium or �sunspot�equilibria views of currency crises.
This dichotomy does not make sense in a global games model of currency
crises: currency attacks are �self- ful�lling�in the sense that speculators
are attacking only because they expect others to do so, but their expec-
tations of others�behavior may nonetheless be pinned down by higher
order beliefs (see Heinemann, 2000, for an important correction of the
equilibrium characterization in Morris and Shin, 1998).
Morris and Shin 2000 laid out the methodological case for using

global games as a framework for economic applications. Morris and Shin
2003 surveys many early applications to currency crises, bank runs, the
design of international institutions and asset pricing, and there have been
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many more since. The following subsection will highlight two important
methodological issues - public signals and dynamics - that have played
an important role in the developing applied literature, before going to
further applications of global games theory.

9 Applications

Let us turn to some applications that make speci�c assumptions about
the distribution of payo¤s and signals. But, if one is interested only
in analyzing the limiting behavior as noise about � becomes small, the
results of the previous section imply that we can identify the limiting
behavior independently of the prior beliefs and the shape of the noise.

9.1 Pricing Debt
This application refers to Morris and Shin (2004). Consider the following
simple model.

1. There are two periods: in period 1, a continuum of investors hold
collateralized debt that will pay

� 1 in period 2 if it is rolled over and if an underlying investment
project is successful;

� 0 in period 2 if it is rolled over and the project is not success-
ful;

� � 2 (0; 1) ; the value of the collateral, if an investor does not
roll over his debt:

2. The success of the project depends on

� the proportion l of investors who do not roll over and
� the state of the economy, �, which is distributed according to
a continuum density p (�)

Speci�cally, the project is successful if the proportion of investors
not rolling over is less than �=z.

3. Write a = 1 for the action �roll over�and a = 0 for the action �do
not roll over�, then the payo¤s can be written as follows:

u (a; l; �) =

8<:
1 if a = 1 and �

z
� 1� l

0 if a = 1 and �
z
< 1� l

� if a = 0

or alternatively
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Percentage of investors rolling over
1� l � �

z
1� l > �

z

i 2 [0; 1] a = 1 1 0
a = 0 � �

Payo¤ structure

Hence,

� (l; �) = u (1; l; �)� u (0; l; �) =
�
1� � if �

z
� 1� l

�� if �
z
< 1� l

so that Z 1

0

� (l; �) dl =

8<:
�� if � � 0
�
z
� � if 0 � � � z
1� � if � � z:

Remark 12 The game representing the model satis�es assumptions P.1*
and P.2, and therefore Proposition 3 holds.

Thus, we can state the following result.

Result 10 Let �� = z�; then the game has a unique (symmetric) cuto¤
strategy equilibrium, such that

8i 2 [0; 1] si (�i) =

�
0 if �i � ��
1 if �i > �

�:

Remark 13 In other words, if private information about � among the
investors is su¢ ciently accurate, the project will collapse exactly if

� � z�:

Question 3 We can now ask how debt would be priced ex ante in this
model, i.e. before anyone observed private signals about �.

Recalling that p (�) is the density of the prior on �, and writing P (�)
for the corresponding cdf, the value of the collateralized debt will be

V (�) � �P (z�) + 1� P (z�) = 1� (1� �)P (z�)

that implies
dV (�)

d�
= P (z�)� z (1� �) p (z�) :

Thus, increasing the value of collateral has two e¤ects:
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Figure 2: The function V (�) :

1. it increases the value of debt in the event of default (the direct
e¤ect);

2. it increases the range of � at which default occurs (the strategic
e¤ect).

For small �, the strategic e¤ect outweighs the direct e¤ect, whereas
for large �, the direct e¤ect outweighs the strategic e¤ect. The following
�gure plots V (�) for the case where z = 10 and p (�) is the standard
normal density.

9.2 Currency Crises
This application refers to Morris and Shin (1998). Consider the following
simple model.

1. There is a continuum of speculators must decide whether to attack
a �xed�exchange rate regime by selling the currency short.

2. Each speculator may short only a unit amount.
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3. There is a �xed transaction cost t of attacking, that can be inter-
preted as an actual transaction cost or as the interest rate di¤er-
ential between currencies.

4. The current value of the currency is e�;

5. the monetary authority may defend or not the currency

(a) if the monetary authority does not defend the currency, the
currency will �oat to the shadow rate � (�), where � is the
state of fundamentals, so that � (�) is increasing in �: Assume
� (�) � e� � t for all �;

(b) if the monetary authority does defend the currency, its value
remains at e�;

(c) The monetary authority defends the currency if the cost of
doing so is not too large, where the costs of defending the
currency are increasing in the proportion of speculators who
attack and decreasing in the state of fundamentals:

(d) Hence, there will be a critical proportion of speculators, b (�),
increasing in �, who must attack in order for a devaluation to
occur.

6. Write a = 1 for the action �not attack�and a = 0 for the action
�attack�, then the payo¤s can be written as follows:

u (a; l; �) =

8<:
0 if a = 1

e� � � (�)� t if a = 0 and 1� l � b (�)
�t if a = 0 and 1� l < b (�)

or alternatively

Percentage of attacking speculators
1� l < b (�) 1� l � b (�)

i 2 [0; 1] a = 1 0 0
a = 0 �t e� � � (�)� t

Payo¤ structure

Hence,

� (l; �) = u (1; l; �)� u (0; l; �) =
�
� (�) + t� e� if l � 1� b (�)

t if l � 1� b (�) :
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Result 11 Suppose � is common knowledge, then

1. if � < b�1 (0) ; then there is unique equilibrium in dominant strate-
gies, a� = 0 for all i 2 [0; 1] ;

2. if b�1 (0) � � � b�1 (1) ; then there two equilibria such that a� = 0
for all i 2 [0; 1] and a�� = 1 for all i 2 [0; 1] ;

3. if � > b�1 (1) ; then there is unique equilibrium in dominant strate-
gies, a� = 1 for all i 2 [0; 1] :

On the other hand, if � is observed with noise, we can apply the
previous results, because the previous assumptions are satis�ed.

Remark 14 Note that the game representing the model satis�es as-
sumptions P.1 and P.2, and therefore Proposition 2 holds.

In particularZ 1

0

� (l; �) dl = [1� b (�)] [� (�) + t� e�] + b (�) t

which impliesZ 1

0

� (l; ��) dl = 0, [1� b (��)] [� (��)� e�] = t:

Thus, we can state the following result.

Result 12 The game representing our model with private information
on � has a unique (symmetric) cuto¤ strategy equilibrium, such that

8i 2 [0; 1] si (�i) =

�
0 if �i � ��
1 if �i > �

�:

9.3 Bank Runs
Consider the following simple model by Goldstein and Pauzner (2005),
who add noise to the classic bank runs model of Diamond and Dybvig
(1983).

1. There are two periods, 1 and 2;

2. There is a continuum of depositors i 2 [0; 1] (with total deposits
normalized to 1);
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3. Each depositor must decide whether to withdraw their money from
a bank at period 1; denoted a = 0; or at period 2, denoted by a = 1;

4. The withdrawn resources are entirely used for consumption that
gives utility U (�) ;

5. A proportion � of depositors will have consumption needs only in
period 1 and will thus have a dominant strategy to withdraw, thus
we are concerned with the game among the proportion 1 � � of
depositors. Let denote by l the proportion of late consumers who
do not withdraw in period 1;

6. The monetary payo¤s are:

� r > 1 if the depositors withdraw their money in period 1 and
there are enough resources;

� 1��r
(1�l)(1��) if there are not enough resources to fund all those
who try to withdraw, i.e. the remaining cash 1��r is divided
equally among early withdrawers. This happens when

�r + (1� l) (1� �) r � 1, l � r � 1
(1� �) r ;

� max f0; 1� �r + (1� l) (1� �) rgR(�) � 0 in period 2 for
those who chose to wait until period 2 to withdraw their
money, i.e. any remaining money after period 1 withdraws,
max f0; 1� �r + (1� l) (1� �) rg ; earns a total returnR(�) >
0 in period 2; which is increasing in �; and it is divided equally
among those who chose to wait until period 2 to withdraw
their money, l (1� �).

Then the consumers monetary payo¤s can be written as follows:

Percentage of late consumers
l � r�1

(1��)r l � r�1
(1��)r

i 2 [0; 1] a = 0 1��r
(1�l)(1��) r

a = 1 0
h
1��r+(1�l)(1��)r

l(1��)

i
R (�)

Monetary payo¤ structure
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Thus, the utilities of late consumers are

u (a; l; �) =

8>>>><>>>>:
U
�

1
1�l(1��)

�
if a = 0 and l � r�1

(1��)r
U (r) if a = 0 and l � r�1

(1��)r
U (0) if a = 1 and l � r�1

(1��)r

U
�h

1��r+(1�l)(1��)r
l(1��)

i
R (�)

�
if a = 0 and l � r�1

(1��)r

Hence,

� (l; �) = u (1; l; �)�u (0; l; �) =

8<: U (0)� U
�

1
1�l(1��)

�
if l � r�1

(1��)r

U
�h

1��r+(1�l)(1��)r
l(1��)

i
R (�)

�
� U (r) if l � r�1

(1��)r

Result 13 Suppose � is common knowledge, then for late consumers

1. if � is small so that also R (�) is small, then there is unique equi-
librium in dominant strategies, a� = 0;

2. if � is intermediate so that also R (�) is intermediate, then there
are two equilibria, a� = 0 for all i 2 [0; 1] and a�� = 1;

3. if � is large so that also R (�) is large, then there is unique equi-
librium in dominant strategies, a� = 1:

On the other hand, if � is observed with noise, we can apply the
previous results, because the previous assumptions are satis�ed.
In particular �� is de�ned by the following equationZ 1

0

� (l; ��) dl = 0,

,
Z r�1

(1��)r

0

�
U (0)� U

�
1

1� l (1� �)

��
dl+

+

Z 1

r�1
(1��)r

�
U

��
1� �r + (1� l) (1� �) r

l (1� �)

�
R (��)

�
� U (r)

�
dl = 0:

Thus, we can state the following result.

Result 14 The game representing our model with private information
on � has a unique (symmetric) cuto¤ strategy equilibrium, such that

si (�i) =

�
0 if �i � ��
1 if �i > �

�:
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9.4 Introduction to Regime Change Games
To introduce this class of global games, it is useful to consider an exam-
ple that has become a workhorse of the applied literature, dubbed the
�regime change�game in Angeletos, Hellwig and Pavan 2007. The ex-
ample comes from a 1999 working paper on �Coordination Risk and the
Price of Debt�presented as a plenary talk at the 1999 European meet-
ings of the Econometric Society, eventually published as Morris and Shin
2004.
Consider the following basic model:

1. There is a continuum of players;

2. Each player must decide whether to invest or not invest.

3. The cost of investing is c 2 (0; 1). The payo¤ to investing is 1 if the
proportion investing, denoted by n; is at least 1 � �, 0 otherwise.
Thus the payo¤ matrix is

n < 1� � n � 1� �
I �c 1� c
NI 0 0

Result 15 If there is common knowledge of � and � 2 (0; 1), there are
multiple Nash equilibria of this continuum player complete information
game: �all invest�and �all not invest�.

But now suppose that there is private asymmetric information such
that

1.
� � N

�
y; � 2

�
and

2. each player in the continuum population observes the mean y,
which is thus a public signal of �.

3. In addition, each player i observes a private signal

�i � N
�
�; �2

�
:

Morris and Shin 2004 show that
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Result 16 the resulting game of incomplete information has a unique
equilibrium if and only if � �

p
2�� , that is, if private signals are

su¢ ciently accurate relative to the accuracy of public signals.

This result is intuitive: we know that if there is common knowledge
of �, there are multiple equilibria. A very small value of � means that the
public signal is very accurate and there is �almost�common knowledge.
This result makes it possible to conduct comparative statics within

a unique equilibrium not only in the uniform prior, no �public�informa-
tion, limit but also with non-trivial public information. A distinctive
comparative static results that arises is that the unique equilibrium is
very sensitive to the public signal y, even conditioning on the true state
� (see Morris and Shin, 2003; 2004; Angeletos and Werning, 2006). This
is because, for each player, the public signal y becomes a more
accurate prediction of others� behavior than his private sig-
nal, even if they are of equal precision. But the sensitivity of the
uniqueness result to public signals also raises a robustness question.
Public information is endogenously generated in economic settings,

and thus a question that arises in many dynamic applications of global
games in general and the regime change game in particular is when en-
dogenous information generates enough public information to get back
multiplicity (Tarashev, 2003; Dasgupta, 2007; Angeletos, Hellwig and
Pavan, 2006; 2007; Angeletos and Werning, 2006; Hellwig, Mukherji
and Tsyvinski, 2006). This literature has highlighted the importance of
endogenous information revelation and the variety of channels through
which such revelation may lead to multiplicity or enhance uniqueness.
In addition, these and other dynamic applications of global games raise
many other important methodological issues, such as the interaction be-
tween the global game uniqueness logic and �herding�, i.e. informational
externalities in dynamic settings without payo¤ complementarities, and
�signalling�, biasing choices from static best responses in order to in�u-
ence opponents�beliefs in the future.

10 Conclusion

Global games rest on the premise that the information received by eco-
nomic agents is informative, but not so informative so as to achieve com-
mon knowledge of the underlying fundamentals. Indeed, as the informa-
tion concerning the fundamentals become more and more accurate, the
actions elicited in equilibrium resemble behavior when the uncertainty
concerning the actions of other agents becomes more and more di¤use.
This points to the potential pitfalls if we rely too much on our intuitions
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that are based on complete information games that allow perfectly coor-
dinated switching of beliefs and actions. Decentralized decision making
cannot be relied on to rule out ine¢ cient outcomes, so that there may
be room for policies that mitigate the ine¢ ciencies. The analysis of eco-
nomic problems using the methods from global games is in its infancy,
but the method seems promising.
Global games also present a �user-friendly�face of games with incom-

plete information in the tradition of Harsanyi. The potentially daunting
task of forming an in�nite hierarchy of beliefs over the actions of all
players in the game can be given a representation in terms of beliefs
(and the behavior that they elicit) that are simple to the point of be-
ing naive. Global games go some way to bridging the gap between those
who believe that rigorous game theory has a role in economics (as we do)
and those who insist on tractable and usable tools for applied economic
analysis.
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