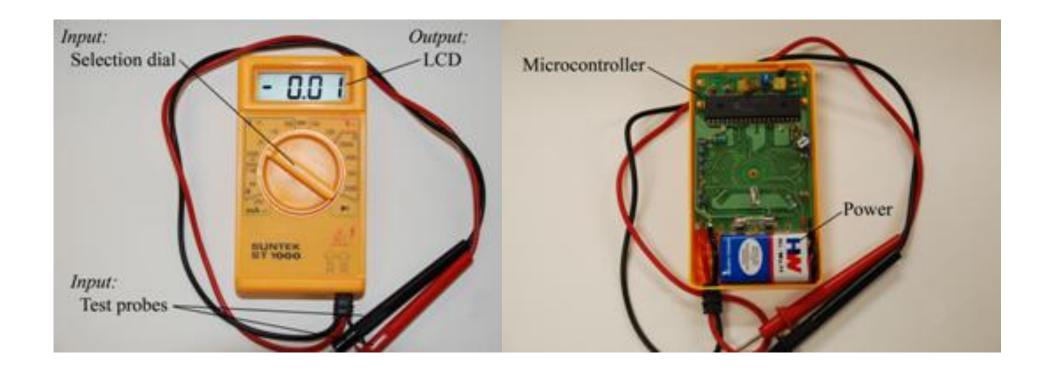
Introduzione ai sistemi embedded

Sistemi Embedded
Anno accademico 2021/22


Sistemi embedded

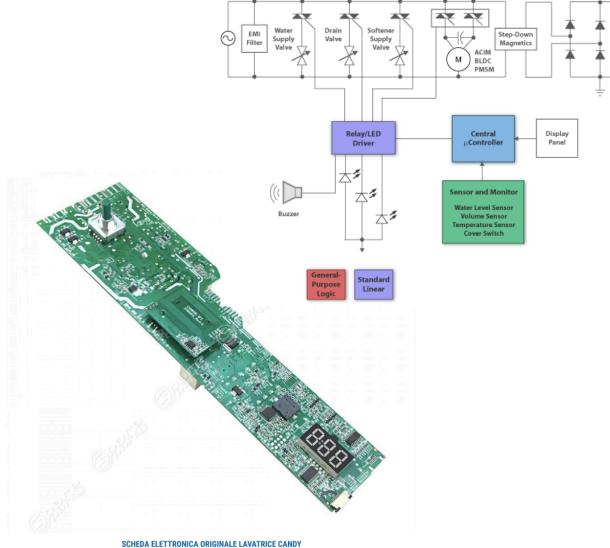
• Cosa sono e perché meritano di essere studiati?


Sistemi embedded

- Cosa sono e perché meritano di essere studiati?
 - Sono dappertutto
 - Oltre a conoscenze del dominio applicativo ed un po' di hardware, richiedono molte competenze software => servono competenze informatiche

Un multimetro

Un multimetro



Una lavatrice

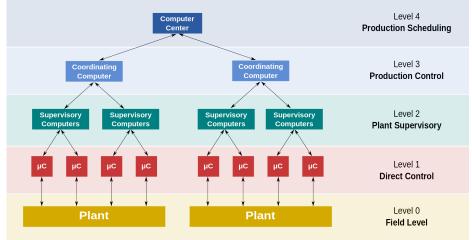
Una lavatrice

Management

LEGEND

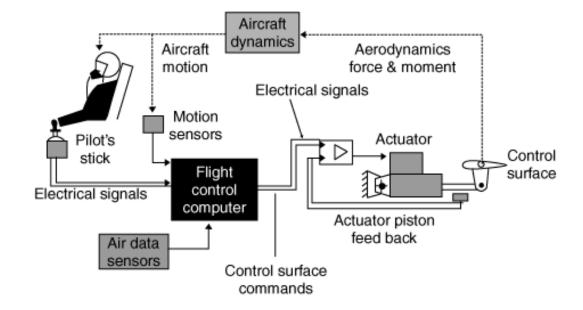
Processor

Interface
RF/IF
Amplifier
Logic
Power
ADC/DAC


Clocks
Other

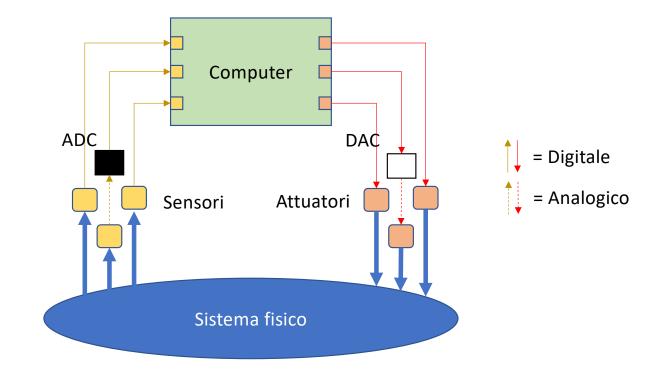
Un impianto industriale

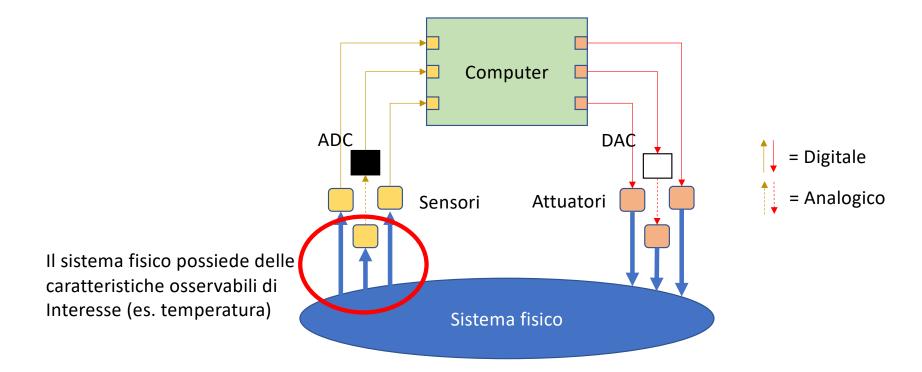

Un impianto industriale

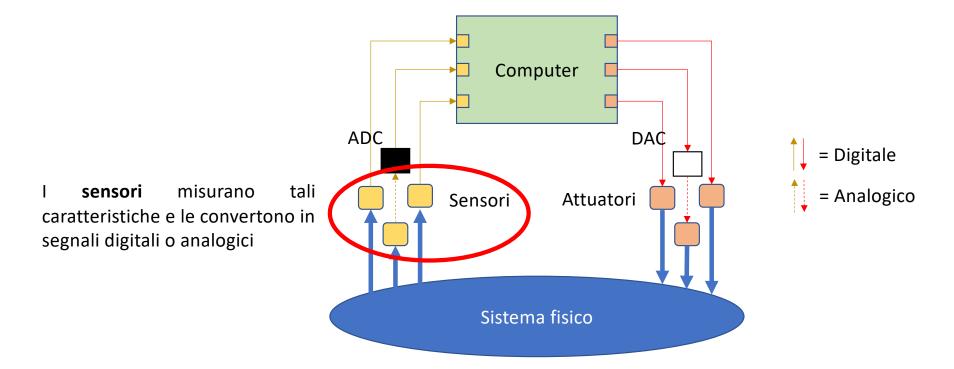

Un aereo passeggeri

Un aereo passeggeri

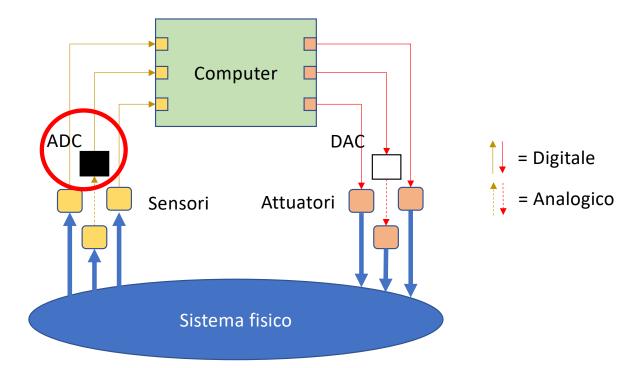
Cosa hanno in comune?

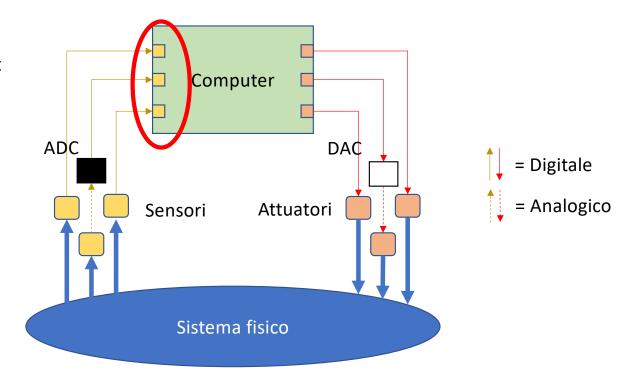

- Sono sistemi con una rilevante componente fisica
- Che contengono (uno o più) calcolatori
- I quali elaborano informazione
- Che è prodotta/consumata dal processo fisico

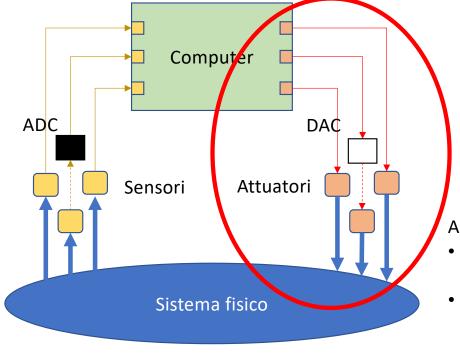

Questi sistemi vengono detti sistemi embedded o sistemi cyber-fisici


"electronic programmable sub-systems that are generally an integral part of a larger heterogeneous system" [ART2005].

Caratteristiche salienti


- Il processo fisico influenza la computazione e viceversa (feedback)
- La computazione deve avvenire
 - In maniera **reattiva**: computazione in reazione a input dal processo fisico
 - In maniera **concorrente**: diversi fenomeni del processo fisico che scatenano la computazione reattiva possono avvenire contemporaneamente
 - In **tempo reale**: l'output deve essere prodotto in un tempo compatibile con la dinamica del processo fisico
 - dinamica del processo / costante di tempo,
 - tempo compatibile non è necessariamente un tempo molto breve.





I segnali analogici vengono convertiti in segnali digitali

Il computer accetta in input i segnali digitali prodotti

= Digitale

= Analogico

Analogamente per gli output:

- Il computer produce segnali di output digitali
- I segnali digitali potrebbero dover essere convertiti in analogici, se l'attuatore lo richiede
- Gli attuatori convertono i segnali in grandezze fisiche (es. coppia), comunque analogiche

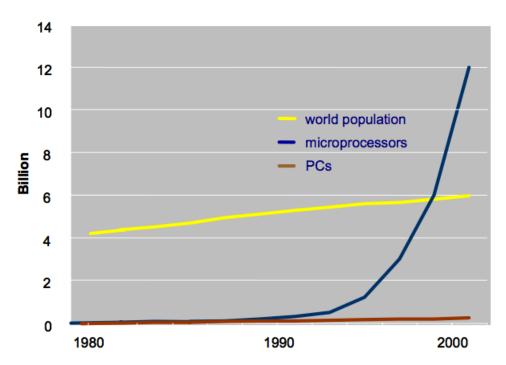
Un mondo di sistemi embedded (1)

- Automotive
 - Controllo trazione e trasmissione
 - Assistenza alla guida
 - Entertainment e comunicazione
- Avionica (circa 50% costo di un aereo)
 - Controllo superfici di volo
 - Navigazione
 - Comunicazione
 - Manutenzione
 - Applicazioni militari (sistemi d'arma, sistemi tattici)

Un mondo di sistemi embedded (2)

- Automazione industriale
 - Controllo impianti
 - Logistica
- Telecomunicazioni
 - Smartphones
 - Apparati di comunicazione digitale
- Consumer electronics
 - Forni a microonde, lavatrici, lavastoviglie, frigoriferi, televisori...
 - Domotica
- Medicina
 - Pacemakers
 - Radiodiagnostica e radioterapia
 - ...

Internet of Things e Industria 4.0


- Convergenza con tecnologie di comunicazione
- Internet of Things (IoT):
 - Sistemi embedded + tecnologie Internet
 - Accesso a sensori ed attuatori via PAN → LAN → MAN → WAN
 - Possibilità per i sistemi embedded di interagire tra di loro (M2M)
 - E con servizi esterni
- Industria 4.0:
 - IoT per i sistemi industriali
 - Integrazione con data analytics e business intelligence

Il valore dei sistemi embedded

Industry sector	Annual global value	ES value (%)	ES value	EC growth (%)	ES growth (%)
Automotive	800 b€	40%	320 b€	10%	10%
Avionics/Aerospace	750 b€	50%	370 b€	5%	14%
Industrial automation	200 b€	55%	110 b€	5%	7%
Telecommunications	1000 b€	55%	550 b€	9%	15%
Consumer electronics and intelligent homes	300 b€	60%	180 b€	8%	15%
Health and medical systems	130 b€	40%	50 b€	?	18%
Total	3180 b€		1580 b€		

From https://msdn.microsoft.com/en-us/library/dd129911.aspx: Estimated total value, through 2006, and growth, through 2010, of major industry sectors using embedded systems (ES = embedded systems, EC = electronic components)

La pervasività dei sistemi embedded

The worldwide number of microprocessors [Bies2005] as an indicator for the penetration of embedded systems

- 2004: circa 2 processori per persona sulla terra, previsti circa 3 per il 2010 [BuildAR2004]
- 2005: Il 98% dei processori prodotti sono usati in sistemi embedded [EmbC2005].

Progettare sistemi embedded

- Ormai riconosciuta come una disciplina a sè
 - Non è solo "programmare un computer più piccolo"
 - Ma pone delle sfide ingegneristiche peculiari e complesse
- La complessità è dovuta alla varietà dei domini applicativi
 - Nota: I sistemi embedded sono di norma special-purpose
 - (ma spesso costituiti da componenti general-purpose)
- Ogni tipo di applicazione pone requisiti diversi
- Questi dettano le scelte progettuali

Tipologie di requisiti

- Efficienza
- Flessibilità
- Affidabilità
 - Business-critical: mette a rischio la riuscita del business
 - Safety-critical: mette a rischio vite umane
- Vincoli real-time
- Grado di interazione con l'uomo
- Mercato

Efficienza

- L'efficienza è la caratteristica di un sistema che porta a termine il proprio funzionamento con un quantità limitata di risorse
- Alcuni attributi:
 - Peso
 - Dimensioni fisiche
 - Consumo energetico
 - Occupazione di memoria del software
 - Grado di riuso
 - Costo

Flessibilità

- Molti sistemi embedded real-time sono soggetti ad un insieme di requisiti che evolve nel tempo, dovuti a modifiche nel sistema stesso, nelle richieste del mercato, nell'ambiente in cui il sistema deve operare, etc.
- La capacità del sistema di accomodare soluzioni a nuovi requisiti, diversi da quelli per cui è stato progettato, è chiamata flessibilità.
- Un importante aspetto non-funzionale di un sistema embedded realtime è che il progetto dovrebbe essere abbastanza flessibile da consentire di adattarsi ad evoluzione dei requisiti con un costo minimo.

Affidabilità

- L'affidabilità è la caratteristica di un sistema il cui funzionamento produce gli effetti voluti o scostamenti accettabili da questi
- I sistemi safety-critical richiedono un'affidabilità molto elevata:
 - Controllo centrali nucleari
 - Controllo superfici di volo aerei
 - Impianti di frenata automobili, ABS, airbag...
 - Pacemakers
- Questo perché l'impatto del loro funzionamento sull'ambiente (persone, cose...) è spesso immediato e profondo

Attributi di affidabilità

- Correttezza: il sistema rispetta i requisiti
- Robustezza: il sistema si comporta accettabilmente anche in situazioni non specificate nei requisiti
- Sicurezza (security): il sistema impedisce usi non autorizzati
- Innocuità (safety): il sistema non ha comportamenti pericolosi
- Occorre valutare e dare priorità ai diversi attributi in fase di progettazione e orientare la progettazione in maniera da rispettare tali valutazioni

Vincoli real-time

- Nei sistemi non embedded il tempo di computazione è essenzialmente una delle dimensioni dell'efficienza
- In certi domini applicativi embedded vi possono essere vincoli realtime
- I vincoli real-time determinano l'affidabilità del sistema
 - Una risposta esatta arrivata in ritardo è una risposta sbagliata, es. se ABS di un autoveicolo interviene in ritardo compromette la safety

Da applicazioni a requisiti (1)

- Esempio: forno a microonde
 - Mercato saturo, necessità di minimizzare i costi
 - Dimensioni sull'ordine della decina di centimetri, peso diversi chili
 - Nessun vincolo energetico
 - Limitata affidabilità
 - Interazione con uomo attraverso un'interfaccia semplice (pulsanti e visore a cristalli liquidi)
- Esempio: acceleratore di particelle per radioterapia
 - Costo dell'ordine di svariati milioni di Euro, mercato molto piccolo
 - Dimensioni: diversi metri, bunker + postazione esterna per tecnico/medico
 - Nessun vincolo energetico
 - Safety-critical: occorre evitare sovradosaggio

Da applicazioni a requisiti (2)

- Esempio: smartphone
 - Costo: dipendente dal mercato di riferimento
 - Dimensioni: pochi centimetri, peso: tra 10² e 10³ grammi
 - Stringenti vincoli energetici e termici
 - Integra diverse funzionalità (chiamata e piattaforma applicativa general-purpose)
 - L'affidabilità di alcune funzionalità (chiamata telefonica) è business-critical
- Esempio: monitoraggio e controllo grid distribuzione energia elettrica
 - Mercato molto piccolo, sistemi mediamente costosi
 - Dimensioni: intere regioni geografiche
 - Nessun vincolo energetico
 - Da business-critical a safety-critical

Alcune dimensioni progettuali

- Piattaforma (HW + SW)
 - Microprocessore (MPU)
 - Microcontrollore (MCU)
 - Digital signal processor (DSP)
 - Logica programmabile (PLD, FPGA)
 - ASIC
- Scelta linguaggi, librerie o real-time OS
- Numero di componenti (centralizzazione vs. distribuzione)
- Quantità e tipo di memoria (SRAM, DRAM, ROM, FLASH)
- Velocità di calcolo (frequenza clock CPU)
- Batteria

Da requisiti a scelte progettuali (1)

- Le piattaforme ASIC sono le più performanti, compatte ed efficienti dal punto di vista energetico, ma le meno flessibili e le più costose
 - Ad es., meno software e quindi meno memoria (spazio occupato, consumo)
 - Potenzialmente più affidabile di una soluzione software
- Costo ASIC:
 - Costo up-front per progetto: elevato, ma può essere ridotto con il riuso (IP)
 - Costo di produzione in serie: molto basso
- La soluzione ASIC può essere considerata in caso di mercati di massa, ma non è flessibile, i.e., non è praticabile se si vuole poter aggiornare la funzionalità dopo il deployment

Da requisiti a scelte progettuali (2)

• Linguaggio e librerie/OS:

- La programmazione «a macchina nuda» (bare-bones) e l'uso del linguaggio macchina può permettere una maggiore efficienza (meno memoria, maggiore velocità, ma è sempre meno vero / rilevante, ad esempio programmando in C, per cui ci sono compilatori molto efficienti)
- Riduce però la scalabilità ed aumenta il rischio di avere un'affidabilità bassa

• Numero componenti:

- Una soluzione centralizzata è potenzialmente meno costosa e più affidabile (nessuna sincronizzazione) di una distribuita
- Ma se il sistema ha dimensioni elevate può essere meno affidabile (rumore sulle linee) e meno efficiente (peso) di una distribuita

Da requisiti a scelte progettuali (3)

• Memoria:

- Le memorie ROM e FLASH sono meno costose delle RAM, di solito sono utilizzate per il codice (che non cambia o cambia sporadicamente)
- Le memorie DRAM sono meno costose e hanno una maggiore densità delle memorie SRAM, ma sono anche più lente e dissipano più energia
- Maggior memoria permette di realizzare più funzionalità in maniera centralizzata, con possibile risparmio di costo
- Allo stesso tempo significa maggiore occupazione di area e costo del componente

Velocità di calcolo:

- Permette più facilmente di soddisfare i vincoli real-time e di realizzare più funzionalità in maniera centralizzata, con un potenziale risparmio di costo
- D'altra parte maggiore velocità di calcolo significa maggior costo del componente, minore efficienza, e potenzialmente più peso e volume (dissipazione calore)

• Batteria:

- Deve fornire sufficiente energia per alimentare tutto il sistema
- Allo stesso tempo più è capace, maggiore è il suo peso, volume e costo

Tornando agli esempi... (1)

- Forno a microonde:
 - Principale driver: minimizzazione costi
 - Una soluzione basata su un microcontrollore a 8 bit è sufficiente
- Acceleratore per radioterapia:
 - Principale driver: safety
 - Soluzione distribuita basata su MCU a 32 bit per l'impianto con ridondanza hardware, più postazione standard PC per interfacciarsi a software di treatment planning

Tornando agli esempi... (2)

• Smartphone:

- Principali driver: costi, dimensione, peso, efficienza energetica
- Diversi tipi di dispositivi hardware: ASIC + IP per codec radiofrequenza, DSP per audio/video processing, MPU per applicazioni; possibile SoC integra le diverse funzionalità
- Monitoraggio e controllo grid distribuzione energia elettrica:
 - Principali driver: costi, vincoli real-time, flessibilità, robustezza
 - Sistema fortemente distribuito, con unità locali basate su MPU + sistema operativo real-time e rete di comunicazione; centrali operative basate su standard PC