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Biased activation of G-protein-coupled receptors (GPCRs) is shifting drug discovery efforts and appears

promising for the development of safer drugs. The most effective analgesics to treat acute pain are

agonists of the m opioid receptor (m-OR), a member of the GPCR superfamily. However, the analgesic use

of opioid drugs, such as morphine, is hindered by adverse effects. Only a few m-OR agonists have been

reported to selectively activate the Gi over b-arrestin signaling pathway, resulting in lower

gastrointestinal dysfunction and respiratory suppression. Here, we discuss the strategies that led to the

development of biased m-OR agonists, and potential areas for improvement, with an emphasis on

structural aspects of the ligand–receptor recognition process.
Introduction
From a pharmacological point of view, drug discovery campaigns

aim for compounds with high potency, low toxicity, and few

adverse effects. In opioid-based analgesia, high potency has been

successfully achieved. However, opioid analgesics with reduced

adverse effects have been elusive. Nevertheless, recent progress

towards this goal has been forthcoming.

Nearly 40% of pharmacologically relevant targets are members

of the GPCR superfamily [1]. These receptors interact with a variety

of molecules, from peptides, hormones, nucleic acids, and lipids to

external stimuli, such as odorants, flavors, or light (photons) [2,3].

Activation of GPCRs by agonists triggers key processes, such as

desensitization, resensitization, downregulation, and internaliza-

tion via downstream signaling through effector proteins, mainly

heterotrimeric G proteins and b-arrestins [4].

Opioid receptors (OR), members of the GPCRs superfamily, are

crucial in pain management, drug addiction, and mood disorders

[5,6], with a central role in hedonic homeostasis and well-being

[7]. There are four OR subtypes: m-opioid receptor (m-OR), d-opi-
oid receptor (d-OR), k-opioid receptor (k-OR) and the opioid

receptor-like 1 [OLR-1 or nociceptin receptor (NOP)]. Activation

of m-OR inhibits severe acute pain, modulating mechanical, chem-
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ical, and supraspinally controlled thermal nociception [8]. Given

that m-OR mediates rewarding properties of nonopioid drugs of

abuse (i.e., cannabinoids, alcohol and nicotine), these receptors

represent a molecular target for reward processing, contributing to

the initiation of addictive behaviors [9]. Adverse effects of m-OR

agonists include nausea, vomiting, gastrointestinal constipation,

respiratory depression, rewarding effects, tolerance, and depen-

dence [10,11]. In the clinic, current strategies for minimizing these

complications include the slow titration of opioids, dose reduction

to achieve an equilibrium between analgesia and tolerable adverse

effects, prevention of nausea, opioid rotation, and changing the

route of administration [12]. In turn, k-OR modulates spinally

mediated thermal nociception and visceral pain. In addition to

their analgesic properties, activation of k-OR results in sedative,

aversive, and hallucinogenic effects, and induces dysphoria and

anhedonia [13]. By contrast, d-OR weakly modulates acute noci-

ception and has antidepressant and anxiolytic effects, but al-

though its activation also appears to lead to convulsions [7].

Therefore, the search for new OR-based medications is the

primary focus of a growing number of research groups, making

use of the vast amount of structural and pharmacological informa-

tion now available. Strategies to identify such molecules span a

range of methodologies, from exhaustive searches, such as high-

throughput screening (HTS), to structurally and pharmacologically
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ally novel ligands with potency comparable to that of endogenous

peptides (e.g., endorphins) [14]. Another source of potent OR

ligands are combinatorial chemistry libraries. Recent efforts in this

field have rendered highly active and selective compounds [15].

From a pharmacological point of view, the use of positive allosteric

modulators (PAM) has resulted in an increased potency and/or

efficacy of the ligands binding to the orthosteric site [16]. Although

the development of allosteric modulators is still in the early drug

discovery stage, it shows promise in the development of analgesics

with fewer adverse effects. Alternatively, agonists that activate both

m-OR/d-OR and NOPR/m-OR have demonstrated an increase in

antinociceptive efficacy [17,18]. By contrast, molecules with dual

but opposite effects acting as m-OR agonists and d-OR antagonists

preferentially prevent or reduce tolerance and physical dependence

[19]. Following this mechanism, opioid combination drugs [i.e.,

morphine (agonist)/naltrexone (antagonist) and oxycodone (ago-

nist)/naloxone (antagonist)] have been developed and marketed for

the treatment of moderate to severe pain. However, attempts to

develop a new analgesic that acts as a mixed m-OR agonist/d-OR

antagonist have not been fruitful. Nevertheless, a mixed m-OR

agonist/d-OR antagonist, Viberzi1, has been marketed, although

its primary indication is for the treatment of irritable bowel syn-

drome with diarrhea, rather than of acute or moderate pain [20].

Lastly, attention has recently focused on molecules capable of

binding to m-OR and transducing particular biological signals, a

phenomenon called ‘functional selectivity’ or ‘biased agonism’

[21,22].

Opioid receptors and functional selectivity
Structural features of GPCRs
The growing number of high-resolution crystal structures of

GPCRs [23] significantly expands our understanding of receptor
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FIGURE 1

Graphical representation of the functional selectivity concept at mu-opioid re
principal component analysis (PCA) plot according to relevant drug-likeness
dots). (b) Classical opiates, such as morphine, bind to the m-OR and produce
parallel signaling cascades (b-arrestin pathway) responsible for the adverse e
signaling pathway over the arrestin pathway produce analgesia with dimin
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activation and related signaling pathways. For example, GPCRs

have high homology within the transmembrane (TM) domains

(approximately 60% of sequence identity), but less in the extra-

cellular regions, a feature that contributes to the selectivity be-

tween different ligands [24], particularly at extracellular loop 3

(ECL3) and the extracellular ends of TM6 and TM7 [25]. Differ-

ences in intracellular regions are involved in downstream signal-

ing for the activation of different pathways, where conformational

changes in TM7, helix 8 (H8), and ECL2 might have a role in

b-arrestin recruitment, while changes in TM3, TM5, and TM6, as

well as in the intracellular loop 2 (ICL2), might be related to G

protein-mediated signaling [26]. This downstream preference is

the basis of functional selectivity.

Realizing biased agonism is therapeutically relevant
Functional selectivity, or biased agonism, explains the ability of a

ligand to induce a specific conformation of the receptor. As a

result, specific pathways are activated with differential efficacies.

Such an effect can be induced either by the binding of the ligand to

the orthosteric site of the receptor, or by the binding of allosteric

modulators that induce biased signaling via the endogenous ago-

nist [27,28]. This is achieved by fine-tuning the conformation of

the receptor [27]. The key therapeutic feature of biased agonists is

their ability to differentiate between specific signaling pathways,

aiming to reduce the related adverse effects without compromising

therapeutic value (Fig. 1a).

The discovery of molecules with the ability to selectively mod-

ulate GPCRs has been described extensively in the literature

[27,29–34], supporting and validating the discovery of emerging

functionally selective drugs. The increasing number of biased

GPCR agonists with potential therapeutic impact is remarkable,

as summarized in Table 1. This evidence builds on the generaliz-

able idea of the selective modulation of GPCRs. Thus, as the
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TABLE 1

Currently known biased agonists for GPCRs and their therapeutic relevance

GPCR Biased ligand example Biased signaling Therapeutic implications Refs

Angiotensin II type 1
receptor

SII, TRV120027, TRV120023 b-arrestin-2 Cardioprotective properties in vivo, reduction of
blood pressure

[76–79]

Chemokine receptors
(CCR1, CCR2, CCR4,
CCR5, CCR7, CCR10,
CXCR3)

CCL19 (CCR7) b-arrestin-2 Regulation of acute and chronic inflammatory
responses in autoimmune diseases

[29,32,80]

Apelin receptor CMF-019 Gai pathway Increases cardiac contractility [81]
Endothelin receptor Macitentan b-arrestin-2 Blocks cellular responses associated with tumor

progression
[82,83]

Adenosine A3 receptor (N)-Methanocarba substituted
derivatives

b-arrestin-2/Gi/o pathway Protection in cardiac and lung ischemia and/or
apoptosis

[84]

Adenosine A1 receptor VCP746, capadenoson Intracellular calcium mobilization Retains cytoprotective signaling in absence of
bradycardia

[85]

5-HT1A receptor F15599/F13714 Cortical heteroceptors/raphe nuclei
somatodendritic autoreceptors

Treatment of cognitive dysfunction and
antidyskinetic pharmacotherapies

[86,87]

5-HT2A receptor Thioridazine, loxapine,
methotrimeprazine

Activate phospholipase A2 (PLA2) Schizophrenia, hallucinations [88,89]

Metergoline, pimetixene Activation of phospholipase C
(PLC) through Gaq

5-HT2C receptor Benzofuran derivatives Gq signalling Weaker desensitization [31]
Dopamine D1 receptor Substituted benzapines G-protein (agonist)/b-arrestin

(antagonist)
Improved therapies for implicated diseases,
such as Parkinson’s disease

[90,91]

Dopamine D2 receptor MLS1547 G-protein Not described; could improve therapies for
certain neuropsychiatric disorders

[92]

m-Opioid receptors Oliceridine, herkinorin,
PZM21, mitragynine

G-protein Analgesia with diminished adverse effects [30,46,55]

k-Opioid receptors Triazole 1.1, 60-GNTI,
collybolide, noribogaine

G-protein Diminished dysphoric adverse effects [93–96]

Beta adrenergic (B1AR)
receptor

Carvedilol b-arrestin-2 Cardioprotection [97]

Histamine H2R receptor Ranitidine/tiotidine b-arrestin-2 Desensitization [98,99]
GLP-1 receptor P5 (exendin-4 analog) G-protein Improves glucose tolerance and chronic

hyperglycemia control
[100]

Cannabinoid 1(CB1)
receptor

Pyrrolidinyl analogs b-arrestin-2 Avoid undesirable psychotropic and psychiatric
adverse effects

[101]
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number of new biased ligands increases, our ability to discover new

therapeutic biased agents will also grow. Following that path,

lessons learned from drug discovery efforts point towards the

identification of features (structural, physicochemical, or based

on the binding recognition process) responsible for the biased

profiles to aid the design and discovery of new biased ligands. A

general timeline for this field is depicted in Box 1, and shows

research efforts documented in publications on this subject and in

in vitro profiles [28]. Pharmacological data for m-OR-biased ligands

is rapidly increasing because of their potential applications in

pain-related ailments. The number of compounds evaluated for

binding affinity is in the millions, but only five molecules have

been identified as m-opioid biased ligands, as schematically

depicted in Fig. 1b. The fact that only a few compounds are biased

ligands (shown in red) does not imply that the rest are balanced

ligands (i.e., nonbiased). In fact, it is possible that other m-OR-

biased compounds could be identified from the pool of com-

pounds known to bind to m-OR. Thus, investigations on the

ligand–receptor recognition process will improve our understand-

ing of the structural features behind the selective activation of

either G proteins or b-arrestins [35]. As summarized in Table 1,

positive therapeutic implications are achieved through the biased

signaling of either the b-arrestins or the G protein pathway,
depending on the receptor involved. In the particular case of

m-OR, the participation of b-arrestins in the mediation of adverse

effects has been extensively supported by experiments in both

cellular assays and b-arrestin-2-knockout (KO) mice. Upon cou-

pling to GPCRs, b-arrestins hinder the G protein interaction with

GPCRs at the ICL2 [36], resulting in receptor desensitization [37].

Consistently with a cellular study, b-arrestin-2 knockout mice are

characterized by an elevated and prolonged morphine analgesia

with impaired desensitization to elevated and prolonged mor-

phine analgesia [38], as well as the attenuation of respiratory

depression and acute constipation [39,40]. Therefore, selective

modulation of G protein-signaling pathway by m-OR ligands

provides a means to produce analgesia with fewer adverse effects.

Endogenous peptides represent relevant m-OR ligands with a

key role in functional selectivity of several GPCRs as well as opioid

receptors [41]. Notably, m-OR endogenous peptides (i.e., enkepha-

lins, endorphins, dynorphins, and neoendorphins) and putative

endogenous peptides (endomorphines) have shown promising

analgesic effects compared with opiates [42], despite their high

liability for proteolysis. Efforts in the development of endomor-

phin analogs have been conducted [43]. In addition to endoge-

nous peptides, only a few compounds have been described as

biased agonists of m-OR. The first molecule reported with such
www.drugdiscoverytoday.com 1721
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y Roth and Chuang in 1980 [71] to describe the phenomenon whereby
y a single GPCR. Simultaneously, Kenakin and Morgan suggested that

 receptor [72]. For almost a decade from the mid-1990s onwards, there
 that a peptide in chemokine receptors induced a biased activity, Jarpe
ning of the 21 st century that the group of Mottola suggested the term
hese findings, several research groups started to describe the apparent
umptions about functional selectivity of opioid receptors were already
orphine in b-arrestin2-KO versus wild-type mice that interest in their
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activity was herkinorin, a selective m-OR agonist derived from the

BOX 1

Timeline of the discovery of biased ligands.

Probably the earliest hint of functional selectivity was proposed b
one or more distinct signaling transductions could be activated b
different ligands could induce different conformations of the same
was evolution of the term. For example, based on the observations
introduced the term ‘biased agonist’ [73]. It was not until the begin
‘functional selectivity’ for dopamine receptor agonists [74]. After t
biased behavior of ligands in different GPCRs [75]. Even when ass
known, it was not until work by Bohn on the pharmacology of m
therapeutic potential as analgesics with safer profiles was triggere
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natural product salvinorin A. This morphine-unrelated compound
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lacks the prototypical nitrogen atom found in most opioid ligands

[44]. Whereas herkinorin activates G protein coupling and ERK1/2

in a naloxone reversible manner, the translocation of b-arrestin-2-
GFP to the receptor is poor, even when GRK2 is overexpressed. By

contrast, under GRK2 overexpression, morphine induces

b-arrestin-2 recruitment. Thus, herkinorin is able to promote

antinociceptive activity with reduced adverse effects, mainly as

a result of its G-protein biased signaling preference [45–47]. Nev-

ertheless, its poor efficacy following systemic administration pre-

cluded its use as a drug candidate; therefore, subsequent studies for

improving its stability and solubility are required [46].

Discovery of m-OR-biased agonists
Oliceridine (TRV130)
With information on the therapeutic applications of functional

selectivity reported over the past decade, it is not surprising that

the discovery of biased ligands had gained the attention of phar-

maceutical companies. For example, screening an in-house chem-

ical library, Trevena Inc., whose business model was the

identification of biased agonists, reported the identification of

oliceridine, a potent analgesic compound with efficacy compara-

ble to that of morphine. Oliceridine (TRV130) is structurally

unrelated to morphine or other previously described m-OR ago-

nists. TRV130 is a strong agonist for G protein signaling, with

potency and efficacy higher than that of morphine, but weak

b-arrestin-2 recruitment. It also exhibited reduced m-OR internal-

ization and significantly less receptor phosphorylation at serine

375 compared with morphine in a cell-based assay [34]. Compared

with morphine, TRV130 produced equivalent analgesia but less

respiratory depression and reduction of tolerance development in

rodent models [48]. This is consistent with the evidence that

morphine produces enhanced analgesia but reduced tolerance

in b-arrestin-2 KO mice compared with wild-type mice, suggesting

that b-arrestin-mediated signaling contributes to tolerance devel-

opment [34,48]. However, the effects of TRV130 on gastrointesti-

nal function were more complicated. One research group found

that TRV130 caused less gastrointestinal dysfunction than mor-

phine at equivalent analgesic doses [34]; another research group

claimed that mice acutely or repeatedly treated with TRV130 at a

dose of 10 mg/kg exhibited robust gastrointestinal inhibition in

fecal accumulation assays [48]. This might correspond to the

different TRV130 regimens and the different recorded time periods

(4 h versus 1 h) reported in the two investigations. It could also

indicate that, owing to its weak b-arrestin recruitment, TRV130

lacks sufficient bias to produce a reliable reduction in gastrointes-

tinal inhibition [47]. Currently, TRV130 (OLINVOTM) is undergo-

ing Phase III clinical trials as a next-generation intravenous opioid

analgesic for the management of moderate-to-severe acute pain.

Under a 0.1 mg TRV130 regimen, the compound resulted in

significantly lower rates of respiratory depression safety events

but did not achieve the analgesic efficacy of morphine. Under

0.35 mg and 0.5 mg regimens, TRV130 produced rapid analgesia

with efficacy superior to that of morphine in the modulation of

moderate-to-severe pain; however, under a 0.5 mg regimen, the

rates of constipation and respiratory events were not statistically

different from those of morphine, which could be consistent with

the conflicting rodent data and reflect its weak activation toward

b-arrestins (www.trevena.com/OLINVO-development.php).
Thus, deciphering the uniqueness of oliceridine to avoid

b-arrestin recruitment has become an urgent need. In an attempt

to address this issue, Filizola and collaborators explored the allo-

steric communication between the binding pocket at the orthos-

teric site, and the intracellular region of the receptor through

molecular dynamics simulations [49]. The analyses suggested that

the recognition of the biased ligand starts at the vestibule region

(an area between the extracellular part of the receptor and the

orthosteric binding pocket). This metastable state is followed by

interactions in the orthosteric binding site. Therefore, the kinetics

of the ligand depends on the interactions of these two stages.

Additionally, the authors proposed that, when oliceridine is

bound to m-OR, communication occurs between the residues in

the oliceridine-binding pocket and the intracellular end of TM3,

but not with residues at TM6. By contrast, a morphine–m-OR

model showed significant coupling between the binding pocket

and both ends of TM3 and TM6. Key residues found to strongly

contribute to the transmission of information from the orthosteric

binding pocket to the intracellular side of the receptor include

W3187.35, R1653.50, Y1493.34, F3478.54, and Y911.55.

PZM21
In an attempt to expand the incipiently explored chemical space

of m-OR-biased ligands, Manglik et al. performed a virtual screen-

ing of over 3 million molecules. This resulted in a m-OR selective

potent Gi activator with minimal b-arrestin-2 recruitment,

PZM21, structurally unrelated to either oliceridine or morphine.

In fact, at a maximal concentration of PZM21, its b-arrestin-2
recruitment was undetectable, making it difficult for a formal

calculation of bias. Its activity in a b-arrestin-2 assay was minimal

compared with DAMGO (H-Tyr-D-Ala-Gly-N-MePhe-Gly-OH) and

morphine even in the presence of overexpressed GRK2. PZM21

also had a minimal level of m-OR internalization compared with

DAMGO and morphine, consistent with its inactive recruitment

toward b-arrestin-2. Furthermore, the maximum effect of mor-

phine is reached with 10 mg/kg, while PZM21 needed 40 mg/kg to

reach the same effect, yielding an equi-analgesic response (87%

versus 92%, respectively). According to Manglik et al., the analge-

sic profile of PZM21 appears to be unique, in the sense that, unlike

morphine, it decreases affective pain perception with minimal

effect on reflexive pain. Therefore, a minimal level of m-OR

internalization compared with that of DAMGO and morphine

was observed. The molecular models presented bu the authors

are in agreement with key interactions known to promote high

affinity and selectivity, via D1473.32 and H2976.52, respectively

[50].

Mytragynine
Natural products are an excellent source of bioactive molecules.

The alkaloid mitragynine and its analog 7-hydroxymitragynine

emerge as new m-OR-biased ligands. Both compounds are bio-

synthesized by Mitragyna speciosa, a medicinal plant from the

southeast region of Asia traditionally used both as stimulant to

reduce fatigue, and as antinociceptive drug because of its opium-

like effect [51–53]. Despite their well-characterized m-OR-mediat-

ed analgesic activity, it was not until recently that pharmacologi-

cal investigations undertaken by Kruegel et al. suggested the G-

protein-biased agonism of both alkaloids. Mitragynine alkaloids
www.drugdiscoverytoday.com 1723
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failed to recruit b-arrestin-2 at concentrations as high as 10 M,

according to a bioluminescence resonance energy transference

(BRET) assay [54]. Furthermore, the structurally related pseudoin-

doxyl mitragynine, a byproduct of the fungal metabolism of 7-

hydroxymitragynine, also preserves the potent antinociceptive

activity, although the diminished observed adverse effects might

involve its m-OR agonist/d-OR antagonist behavior [55].

A m-OR weak partial agonist/antagonist
Unlike the biased MOR agonists, NAP was characterized as a biased

MOR antagonist rather than a weak partial agonist by Zhang et al.

[26]. NAP has a morphine-like structure and exhibited weak partial

agonist potency (23% of DMAGO) in a [35S]GTPgS binding assay

with no apparent recruitment of b-arrestin-2 [56]. However, NAP

showed no apparent activity in a calcium flux assay using hMOR-

CHO cells transfected with chimeric Gaqi5, suggesting that it acted

as an antagonist in this instance. Furthermore, NAP potently

blocked m-OR full agonist-induced b-arrestin-2 recruitment and

translocation, denoting its ability to selectively antagonize the

b-arrestin-2 pathway. This in vitro antagonist activity correlates

with the results from in vivo studies, in which NAP failed to

produce antinociception at doses up to 100 mg/kg but antago-

nized morphine analgesia in mice. Meanwhile, it also failed to

induce muscle contractions of isolated distal and proximal colons

from mice but significantly reversed the reduction of colon motil-

ity induced by morphine. Despite the apparent lack of analgesic

effect, NAP seems to have the therapeutic potential to restore

morphine-impaired intestinal motility, partially because of its

latent biased competitive antagonism [35]. Nevertheless, further

(a)
Biased ligand
binding site

Classical opioid
binding site

μ-OR

FIGURE 2

Binding model of biased ligands and the classical opiates at mu-opioid rece
(green) and biased ligands (orange). (b) Detail of binding model for biased
reference (yellow sticks). (c) Predicted binding modes of biased ligands.
1724 www.drugdiscoverytoday.com
studies to confirm the supposed biased activity of NAP are re-

quired.

Binding models of biased ligands
The wealth of pharmacological information on OR has shown that

binding of opioid ligands to the orthosteric site of m-OR with high

affinity drives the receptor equilibrium from an inactive confor-

mation to an active form. Depending on the intrinsic activity of

the ligand, it can result in a full response (full agonist) or a lesser

response, even if there is a full occupancy of the binding site in the

receptor (partial agonist). It has been suggested that partial ago-

nists have a reduced ability to differentiate between active and

inactive conformations, resulting in a lesser equilibrium towards

the active form, or even more, to induce a different (and alterna-

tive) active conformation of the receptor, producing less activa-

tion of downstream signaling effectors. Similarly, functional

selectivity is based on the paradigm of several active conforma-

tions of a receptor. However, this phenomenon is commonly

simplified to active and inactive conformations of the receptor

[16]. Thus, the analysis of the interactions at the molecular level of

biased ligands with the crystal structures of both active and inac-

tive conformations of m-OR is informative, given that both struc-

tures represent snapshots of stabilized conformations.

An estimate of binding models of oliceridine, PZM21, mitragy-

nine, and NAP suggests common interactions with m-OR among

biased and nonbiased opioid ligands, as depicted in Fig. 2. Inter-

actions observed in those models are located near the extracellular

side of the receptor, involving TM2 (Q1242.60, N1272.63, and

Y1282.64), ECL1 (W133), and ECL2 (D216, C217, T218, L219,
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and F221). Additionally, most of the interactions shared by m-OR

agonists, antagonists, and partial agonists are also shared by biased

ligands, including the interaction with D1473.32, in agreement

with previous modeling studies and site-directed mutagenesis

experiments, which determined the crucial role of this residue

in opioid ligand recognition [57]. These findings agree with the

interacting regions close to TM2, TM3, and TM7 suggested by

Schneider [49], involving two different ligand-binding stages. It

has been proposed that the first step, or site of interaction, for the

biased ligands is the so-called ‘vestibule region’, located between

the orthosteric binding pocket and the extracellular side, before

the ligand penetrates the orthosteric pocket. As mentioned above,

this region could have a key role in the modulation of the receptor,

with concomitant changes in the signaling profile. In opioid

receptors, pharmacophoric features have been rationalized with

the ‘message–address’ concept. In this context, the ‘address’ is the

part of the ligand responsible for the receptor recognition and,

therefore, its affinity; and the ‘message’ is part of the ligand

responsible for the activity (efficacy) [58]. Similarly, an extension

of the message–address concept for biased ligands could be pro-
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rotein–ligand interaction fingerprints (PLIF) profile of mu-opioid receptor (m-OR) lig
e ChEMBL database. (c) Population histogram and (d) chemical space (orange do
teractions corresponding to the biased profile.
posed. For example, despite the structural diversity among biased

ligands, the address core is represented mainly by those interac-

tions near the orthosteric binding site, corresponding to the

putative interactions of opiates. By contrast, interactions related

to the side chains of the biased ligands with those residues men-

tioned above could represent the message transferred to the re-

ceptor: the furan ring for herkinorin, indole core for mitragynine,

pyridine for NAP, or thiophene for PZM21 and oliceridine. Fur-

thermore, the binding recognition process of herkinorin on m-OR

has recently been analyzed through molecular dynamics simula-

tions and free energy calculations [59]. It was found that herki-

norin reaches a previously noted allosteric site through

interactions of the C2-benzyloxy group with N1503.35, which

has a key role in preventing b-arrestin-2 signaling. Importantly,

the mutation at N131A or N131 V in d-OR (homologous to

N1503.35 in m-OR) increases the activation levels for the

b-arrestin-2 pathway compared with the wild-type protein [60].

Therefore, it is possible to hypothesize that molecules reaching

this allosteric site by other structural means should also maintain

this effect, as is the case with NAP, where the cyclopropyl group is
(b)

(d)

ChemBL compounds
targeting μ-OR

(N  = 1269)

Filtered ligands
(N = 332)

G
ly

32
5

Ty
r3

26

G
ly

32
5

Ty
r3

26

Drug Discovery Today 

ands. (a) Population histogram and (b) chemical space of m-OR ligands in
ts) of filtered ligands from the ChEMBL database based on the proposed

www.drugdiscoverytoday.com 1725



REVIEWS Drug Discovery Today �Volume 22, Number 11 �November 2017

cription m-OR ligands
included

R-Ligand Association (GLASS) is a manually curated
sitory for experimentally validated GPCR–ligand
ractions. Retrieves information from literature and public
bases. Developed and maintained by the Zhang Lab at the
ersity of Michigan, USA

�5800 active
molecules, different
in vitro assays

base with information about both GPCRs and their known
ds. Enterable either by GPCR search or ligand search. Data
not available to batch-download. Maintained by the
rmacoInformatics Laboratory, Kyoto University

235 agonists, 36
antagonists

tabase created to help with GPCR docking simulations,
g with the GPCR Ligand Library (GLL). For each ligand in
, there are 39 decoys from ZINC ensuring physical similarity
ix properties, but structural dissimilarity. Provided by the
dio N. Cavasotto Lab of the Instituto de Biomedicina de
nos Aires- Max Planck Society Partner (IBioBA-MPSP)

Agonists: 140
molecules and 5460
decoys; antagonists:
27 compounds and
1053 decoys

tains biological information of small molecules (>2 000 000
pounds), retrieving data from more than 10 000 targets; it
ganized as three linked databases (Substance, Compound

 BioAssay) within the Entrez information retrieval system of
NCBI

�400 active
compounds,
different in vitro
assays

ctive drug-like small molecules (>2 000 000); includes 2D
ctures, calculated properties, and abstracted bioactivities
ding constants, pharmacology, and ADMET data). It is an
-to-access database; searches can be defined by target
1 000 targets) and browsed by activity type (EC50, Ki, IC50,
.

�6000 compounds
assessed in human,
rat, guinea pig, and
mouse

ides quantitative information about drug targets,
roved drugs, and experimental molecules of those targets.
icts detailed data on targets. Created from a collaboration
een The British Pharmacological Society (BPS) and the

rnational Union of Basic and Clinical Pharmacology
HAR)

97 agonists,
antagonists and
allosteric modulators

Review
s
�P

O
ST

SC
R
EEN
oriented similar to the benzyloxy group of herkinorin at the

allosteric site.

Several studies have explored the binding modes of different

ligands at the m, d-, and k-OR [5,61–63]. For instance, based on

docking models, Noori et al. proposed two main binding regions in

opioid receptors that might correlate with agonists and antago-

nists in terms of depth within the receptor, following a relation-

ship between the affinity of the ligand and the proximity to the

extracellular side [64]. Similarly, it could be hypothesized that the

binding recognition profile of biased ligands might be character-

istic and allow one to discriminate biased from nonbiased ligands.

Further modeling and experimental studies to identify potential

biased ligands are warranted.

Scaffolds and databases
From a structural point of view, no pharmacophore appears to be

shared by currently known m-OR-biased ligands. In addition,

comparison of the chemical space (based on drug-like properties)

of m-OR ligands from relevant databases (i.e., GDD, GLASS, Pub-

Chem, IUPHAR/BPS Guide to Pharmacology, and ChEMBL), illus-

trates that most of the active compounds share their densest area

with the biased compounds (Fig. S1 in the Supplemental informa-

tion online). Molecules were prepared and analyzed using the

ChemAxon suit of programs. Clearly, the uniqueness of biased

l-

i-
TABLE 2

GPCR databases with relevance in drug discovery

Database (source) GPCR
specialized
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gands was not captured by druglike properties used in this chemi-

cal space representation. This simple but informative comparison

underscores the importance of considering features beyond the

chemical description of the molecules, such as those involving

ligand–receptor interactions.

Figure 3 illustrates an analysis that is performed by the genera-

tion of protein–ligand interaction fingerprints (PLIF). These fin-

gerprints are designed to capture the interactions between a ligand

and a protein, providing a means for the rapid manipulation,

storage, and analysis of the data in the binary string format

[65]. The frequency count of the interactions, obtained from

the PLIF analysis, was modeled for both biased and some opiate

m-OR ligands (Fig. S2 in the Supplemental information online).

The profile allows the identification of interactions that were only

observed for biased ligands, compared with agonists, as described

above. The information collected from the PLIF analysis could be

used as a first filter for the discovery of biased ligands, for example

in virtual screening campaigns. Given that the basic requirement

for a ligand to behave as a biased agonist is to have affinity for the

receptor, a primary source of compounds are databases of known

opioid ligands. In this context, affinity data of compounds towards

m-OR are available in several databases. A description of represen-

tative databases is shown in Table 2. While some of these databases

are specific for GPCRs, others are more general. As an example of

http://zhanglab.ccmb.med.umich.edu/GLASS/
http://pharminfo.pharm.kyoto-u.ac.jp/services/glida/
http://cavasotto-lab.net/Databases/GDD/
https://pubchem.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/chembl/
http://www.guidetopharmacology.org/
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how the information described herein could be applied to the

discovery of m-OR-biased ligand candidates, we made a prelimi-

nary analysis of the m-OR ligands in ChEMBL database. The search

for compounds was set to those ligands targeting the human m-OR

with information on affinity data (Ki). Details are provided in

supplementary information online. Briefly, the database was cu-

rated, energy minimized, and docked into the active and inactive

state of m-OR. The interactions were assigned as present (1) or

absent (0). This binary digit (or bit) was characteristic for each

protein–ligand complex in the data set and constituted its PLIF.

Frequency counts of the interactions obtained from the docking

of 1269 compounds from ChEMBL, obtained from the PLIF analy-

sis, are shown in Fig. 3a and the corresponding chemical space

representation of this set is shown in Fig. 3b. From this set, 332

compounds satisfied the profile of residue interactions obtained

for biased ligands (Fig. 3c, d). This analysis is preliminary but

exemplifies the feasibility of identifying a characteristic profile of

interactions for biased ligands. A consensus interacting profile

obtained from a comprehensive study will enable the suggestion

of putatively biased-driven m-OR interactions that can then be

used to search for new m-OR-biased ligands.

Concluding remarks
Knowledge accumulated during the past few decades towards the

discovery of the ideal pain-reliever has provided the first molecules

with diminished adverse effects and enhanced analgesia, namely

biased agonists. Selective modulation of specific signaling path-

ways is a complex and multicomponent process. Thus, it should be

explored from different perspectives. In this review, we focused on

structural aspects based on available yet limited information of

biased ligands. Protein–ligand interacting patterns appear to pro-

vide valuable information that can be used to characterize these

ligands. However, additional aspects should be taken into account.

On the one hand, biased agonism is affected by experimental

variables at different biological levels (tissue, cellular, or enzymat-

ic), generally referred as system bias. These variables impact the

biased effect measurement [28,66]. On the other hand, the sensi-

tivity of the detection methods also affects the observed response,

which is regarded as observational bias. Both types of deviation are

called ‘apparent bias’. To suppress the contribution of the apparent

bias, the data should be quantified using a method that excludes
both system and observational bias [67]. A further step forward in

the field of biased agonism was the quantification of the effect via a

bias index [68,69]. Among the models to quantify biased agonism,

two convenient methodologies are: the operational model of

agonism (systematic independent quantification of agonist activ-

ity via the relative transduction ratio coefficient, or blig factor);

and the intrinsic relative activity (RAi), which can be calculated

from estimated parameters (EC50 and Emax). Yet, comparing the

maximal effects (Emax) and potencies (EC50) of ligands for different

signaling pathways is common [70]. Moreover, the strong depen-

dence on apparent bias makes it hard to arrive at a validated and

standardized methodology to evaluate the bias index.

However, detailed information about biased signaling at the

molecular level is still limited and represents an open question. As

described throughout this paper, an overall analysis of the infor-

mation generated from the binding recognition models of biased

ligands with the receptor could help in the design of new biased

agonists. Hence, comprehensive molecular modeling and che-

moinformatic studies are warranted. In this regard, refined dock-

ing studies and molecular dynamics simulations will increase our

understanding of this field and help fill the gaps in the design of

molecules with this promising pharmacological and therapeutic

profile.

All in all, biased agonism profiling should be taken into account

when working with GPCRs, especially for those receptors with

known functional selectivity. Computational models, pharmaco-

logical information, and structural data are paving the way to

reach this goal.
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