Reaction

$$RX + Nu = RNu + X$$

- nucleophile, Nu
 - species attracted to nucleus (δ^+ region)
 - negatively charged or non-bonded electrons
 - generally abundant in aqueous environments
- leaving group, X
 - nucleophile substitutes for leaving group
 - leaves with extra electron
 - negatively charged or non-bonded electrons
 - typically not as nucleophilic as nucleophile

- Relative
 nucleophilicities (n)
 - based on kinetics of reaction with methyl bromide

$$CH_3Br + Nu^- \rightleftharpoons CH_3Nu + Br^-$$

 n related to electronegativity of Nu

Nu	n		
ClO ₄ -	<0		
H ₂ O	0.0		
NO_3^{-}	1.0		
F-	2.0		
SO ₄ ²⁻	2.5	_	
CH ₃ COO ⁻	2.7	aster	
Cl-	3.0	er -	
HCO ₃ -	3.8		
HPO ₄ ²⁻	3.8		
Br⁻	3.9		
OH-	4.2		
CN-	5.0		
-	5.0		
HS ⁻	5.1		

Relative leaving group effectiveness

• lower $pK_a \rightarrow$ better able to accommodate negative charge \rightarrow better leaving group

$$CH_3Br + Nu^- = CH_3Nu + Br^-$$

- Second order, S_N2
 - nucleophile initiates reaction
 - rate depends on nucleophile concentration
- First order, S_N1
 - leaving group initiates reaction
 - rate DOES NOT depend on nucleophile concentration

- Second order, S_N2
 - nucleophile bonds with δ^+ carbon
 - nucleophile supplies electrons for bond
 - creates high energy transition state
 - leaving group leaves δ^+ carbon
 - leaving group takes electrons from bond

- Transition state
 - both Nu and X are bonded to carbon
 - stability of transition state governs rate
 - stabile transition state = easy to form

- Second order, S_N2
 - kinetics

•
$$CH_3CI + Nu^- \rightleftharpoons CH_3Nu + CI^-$$

$$\frac{d[CH_3Cl]}{dt} = -k_{S_N 2}[CH_3Cl][Nu^-]$$

$$\frac{d[CH_3Cl]}{dt} = -k'[CH_3Cl]$$

Nucleophilic Sub

 Metolachlor and thiol-derivatized beads

$$MCI + RSH \Rightarrow M-SR + H^+ + CI^-$$

$$\frac{d[MCl]}{dt} = -k_{S_N 2}[MCl][RSH] = -k'[MCl]$$

Willems et al. (1996, ES&T 30, 2148-2154)

- First order, S_N1
 - leaving group leaves δ^+ carbon
 - forms "carbocation"
 - δ ⁺ carbon "finds" nucleophile
 - nucleophile supplies electrons for bond

- Transition state
 - rate dictated by stability of carbocation RC⁺
 - S_N1 favored by bulky R
 - steric hindrance of Nu attack

- First order, S_N1
 - kinetics
 - $(CH_3)_3CCI \rightleftharpoons (CH_3)C^+ + CI^-$
 - $(CH_3)_3C^+ + Nu^- \rightleftharpoons (CH_3)CNu$

$$\frac{d[C(CH_3)_3Cl]}{dt} = -k_{S_N1}[C(CH_3)_3Cl]$$

- Does chloromethane degrade by
 - A. first order
 - B. second order

- Does tert-butyl chloride degrade by
 - A. first order
 - B. second order nucleophilic substitution?

- Factors favoring S_N2:
 - δ^+ carbon
 - nearby electron-withdrawing groups (e.g., halogens)
 - no steric hindrance
 - from methyls, from halogens
- Factors favoring S_N1:
 - stabilized carbocation, RC⁺
 - nearby electron-donating substituents (e.g., methyl)
 - double bond, or aromatic ring
 - steric hindrance
 - from methyls

Contrast between S_N2 and S_N1

Nucleophilic Substitution Reactivity

mechanism/ half-life*

mechanism/ half-life*

*hydrolysis at pH 7, 25°C

*hydrolysis at pH 7, 25°C

Table 13.6 Hydrolysis Half-Lives and Postulated Reaction Mechanisms at 25°C of Some Monohalogenated Hydrocarbons at Neutral pH a

Compound	Type of Carbon to Which L is Attached	$t_{1/2}$ (Hydrolysis)			Dominant Mechanism(s)	
		L = F	Cl	Br	Ι	in Nucleophilic Substitution Reactions
R-CH ₂ -L	primary	≈30 yr ^b	340 d ^b	20–40 d ^c	50–110 d ^d	S _N 2
H³Ć CH−r H³C	secondary		38 d	2 d	3 d	$S_{N}2S_{N}1$
CH₃ H₃C——L CH₃	tertiary	50 d	23 s			$S_{N}1$
CH ₂ = CH- CH ₂ -L	allyl		69 d	0.5 d	2 d	$S_{N}2S_{N}1$
	benzyl		15 h	0.4 h		$S_{N}2S_{N}1$

^a Data taken from Robertson (1969) and Mabey and Mill (1978). ^b R = H. ^c R = H, C₁ to C₅-n-alkyl. ^d R = H, CH₃.

Groundwater Contamination by Volatile Halogenated Alkanes: Abiotic Formation of Volatile Sulfur Compounds under Anaerobic Conditions

Alkyl bromides leaked into groundwater and dialchyl sulfides found several years later.

Schwarzenbach et. al, Envronmental Science & Technology, 19, 322-327 (1985)

$$-\overset{\mid}{C}-\overset{\mid}{C}-\overset{\downarrow}{C}-$$

$$\downarrow C=C$$

$$+ H^{+} + X^{-}$$

- Elimination
 - also called
 - β-elimination
 - dehydrohalogenation
 - competes with nucleophilic substitution
 - favored by "acidic protons"
 - faster when S_N2 is sterically hindered
 - faster for polyhalogenated hydrocarbons
 - more steric hindrance
 - more acidic protons

$$CI \longrightarrow C \longrightarrow CI$$
 $CI \longrightarrow CI$
 $CI \longrightarrow CI$
 $CI \longrightarrow CI$
 $CI \longrightarrow CI$

- Elimination
 - second order, E2
 - nucleophile "abstracts" an acidic proton
 - C − C bond becomes C = C
 - leaving group on neighbor carbon departs
 - first order, E1_{CB} or E1
 - acidic proton leaves on its own, E1_{CB}
 or
 - leaving group leaves on its own, E1
 - no need for nucleophile

- Second order, E2
 - nucleophile "abstracts" acidic H
 - nucleophile usually OH⁻
 - strong nucleophile
 - C—(H) bond mimics nucleophilic attack
 - electrons attack α carbon
 - leaving group leaves
 - leaving group on α carbon
 - takes electrons in bond
 - result of "internal" nucleophilic attack

CH₃-CH₂

H

CH₃

Second order, E2

но⊖

- Second order, E2
 - kinetics

•
$$Cl_3C$$
— $CHCl_2$ + OH \rightleftharpoons Cl_2C = CCl_2 + H_2O + Cl

$$\frac{d[Cl_3CCHCl_2]}{dt} = -k_{E2}[Cl_3CCHCl_2][OH^-]$$

$$\frac{d[Cl_3CCHCl_2]}{dt} = -k'[Cl_3CCHCl_2]$$

- First order, E1_{CB}
 - acidic H released
 - electrons from C—H bond return to C—C bond
 - leaving group on α carbon leaves
 - leaving group takes electrons in bond

- First order, E1_{CB}
 - kinetics

$$\bullet$$
 Cl₃C $-$ CH₃ \rightleftharpoons Cl₂C=CH₂ + H⁺ + Cl⁻

$$\frac{d[Cl_3CCH_3]}{dt} = -k_{E1_{CB}}[Cl_3CCH_3]$$

- First order, E1
 - leaving group on α carbon leaves
 - leaving group takes electrons in bond
 - acidic H released
 - electrons from C—H bond return to C—C bond

$$CI \longrightarrow C \longrightarrow CI \longrightarrow H \longrightarrow CI \longrightarrow CI \longrightarrow CI \longrightarrow H \longrightarrow H^{+}$$

$$CI \longrightarrow CI \longrightarrow H \longrightarrow CI \longrightarrow CI \longrightarrow H$$

- First order, E1
 - kinetics

•
$$Cl_3C-CH_3 \rightleftharpoons Cl_2C=CH_2 + H^+ + Cl^-$$

$$\frac{d[Cl_3CCH_3]}{dt} = -k_{E1}[Cl_3CCH_3]$$

- E2 favored by
 - acidic proton vulnerable to abstraction
- E1_{CB} favored by
 - very acidic proton
 - lacking good leaving groups in α
- E1 favored by
 - very good leaving group
 - carbocation can be stabilized
 - electron-donating substituents
 - less acidic proton

- 1,1,1-Trichloroethane
 - substitution and elimination (Gerkens and Franklin, 1989, Chemosphere 19, 1929)
 - S_N1 (~75-80%)
 - E1 (~20-25%)

Substitution and Elimination

How does it react?

nucleophilic substitution?

A. second order?

B. first order?

elimination:

C. second order?

D. first order?

need two C's

Substitution and Elimination

How does it react?

- Factors favoring S_N2:
 - δ^+ carbon
 - nearby electron-withdrawing groups (e.g., halogens)
 - no steric hindrance
 - from methyls, from halogens
- Factors favoring S_N1:
 - stabilized carbocation, RC⁺
 - nearby electron-donating substituents (e.g., methyl)
 - double bond, or aromatic ring
 - steric hindrance
 - from methyls

- E2 favored by
 - acidic proton vulnerable to abstraction
- E1_{CB} favored by
 - very acidic proton
 - lacking good leaving groups in α
- E1 favored by
 - very good leaving group
 - carbocation can be stabilized
 - electron-donating substituents
 - less acidic proton

Overall reaction kinetics

$$\frac{d[A]}{dt} = -\left\{k_{S_N 1} + \sum_{i} k_{S_N 2} [Nu_i] + k_{E1} + k_{E1_{CB}} + \sum_{i} k_{E2} [Nu_i]\right\} [A]$$

- Hydrolysis
 - water and hydroxide as Nu
 - includes substitution and elimination

- Examples
 - carboxylic acid esters

• carboxylic acid amides

carbamates

phospho- and thioesters

General mechanism

- Z is C, P, or S (the target of nucleophilic attack)
- X is O, S, NR (heteroatoms)
- L is RO⁻, R₁R₂N⁻, RS⁻, Cl⁻, etc. (the leaving group)

Nomenclature for carboxylic acid esters

Hydrolysis $t_{1/2}$ (d) at 25°C for several caboxylic acid esters as a function of solution pH due to changing contributions of the catalysis

- Hydrolysis mechanisms
 - acid-catalyzed $-k_A$ (M⁻¹ s⁻¹)
 - protonation of carboxylic acid ester
 - H₂O as nucleophile
 - neutral $-k_N(s^{-1})$
 - H₂O as nucleophile
 - base-catalyzed $-k_B (M^{-1} s^{-1})$
 - OH⁻ as nucleophile

- Hydrolysis mechanisms
 - effect of pH, compound

$$k_h = k_A [H^+] + k_{H2O} [H_2O] + k_B [OH^-]$$

$$k_h = k_H + k_N + k_{OH}$$

Effect of pH:

$$k_h = k_A [H^+] + k_{H2O} [H_2O] + k_B [OH^-]$$

$$k_h = k_A [H^+]$$
 \longrightarrow $\log k_h = \log k_A - pH$

$$k_h = k_{H2O}[H_2O] = k_N$$
 $log k_h = log k_N$

$$k_h = k_B \text{ [OH-]} \longrightarrow \log k_h = \log k_B + \log \text{ [OH-]} \mod \text{[OH-]} = \frac{K_W}{\text{[H^+]}}$$

$$\log k_h = \log k_B + \log K_W - \log \text{[H+]}$$

$$log k_h = log k_B K_w + pH$$

Hydrolysis of Acid Derivatives $_{log k_h = log k_A - pH}$

- Determining I_{AN} , I_{AB} , I_{NB}
 - I_{AN} occurs at the pH at which

$$k_A [H^+] = k_N$$
 $I_{NA} = log (k_A/k_N)$

I_{AB} occurs at the pH at which

$$k_A [H^+] = k_B [OH^-]$$
 $I_{AB} = \frac{1}{2} log (k_A/k_B K_W)$

I_{NB} occurs at the pH at which

$$k_B [OH^-] = k_N$$
 $I_{NB} = log (k_N/k_B K_W)$

рН

 $\log k_h = \log k_N$

 $log k_h = log k_R K_w + pH$

Table 13.8 Rate Constants k_A , k_N , and k_B , Half-Lives at pH 7, and I Values for Hydrolysis of Some Carboxylic Acid Esters at 25°C a

	Compound O R 1 - C - O - R 2							
\mathbf{R}_1	R_2	$(M^{-1} s^{-1})$	$k_{\rm N} angle ({ m s}^{-1})$	$k_{\rm B} \ ({ m M}^{-1} \ { m s}^{-1})$	t _{1/2} (pH 7)	I _{AN} b,c.e	$I_{ m AB}^{c,e}$	$I_{ m NB}^{}$
CH ₃ -	- CH ₂ CH ₃	1.1×10^{-4}	1.5×10^{-10}	1.1×10^{-1}	2 yr	(5.9)	5.5	(5.1)
CH_3 $-$	$-C(CH_3)_3$	1.3×10^{-4}		1.5×10^{-3}	140 yr		6.5	
H	-C(CH ₃) ₃	2.7×10^{-3}	1.0×10^{-6}	1.7×10^{0}	7 d	2.6	5.6	7.8
$\mathrm{CH_3}$ $-$	$-CH = CH_2$	1.4×10^{-4}	1.1×10^{-7}	1.0×10^{1}	7 d	3.1	(4.6)	6.0
CH ₃ –		7.8×10^{-5}	6.6×10^{-8}	1.4×10^{0}	38 d	3.1	(4.8)	6.7
CH ₃ –	NO ₂		1.1×10^{-5}	9.4×10^{1}	10 h			7.1
CH ₂ Cl –	- CH ₃	8.5×10^{-5}	2.1×10^{-7}	1.4×10^2	14 h	2.6	(3.9)	5.2
CHCl ₂ –	- CH ₃	2.3×10^{-4}	1.5×10^{-5}	2.8×10^3	40 min	1.2	(3.5)	5.7
CHCl ₂ –			1.8×10^{-3}	1.3×10^4	4 min			7.1

^a Data from Mabey and Mill (1978) except for *tert*-butyl formate ($R_1 = H$, $R_2 = C(CH_3)_3$; Church et al., 1999). ^b $I_{AN} = \log (k_A/k_N)$. ^c $I_{AB} = 1/2 \log (k_A/k_BK_w)$. ^d $I_{NB} = \log (k_N/k_BK_w)$. ^e Parentheses indicate that one or both of the processes is too slow to contribute significantly to the overall rate.

- Acid hydrolysis important for esters with:
 - electron-donating substituents
 - poor leaving groups (high pK_a)
 - R₁ and R₂ as alkanes (methyl, ethyl, ...)

$$R_1COOR_2 + H_2O + H^+ \rightleftharpoons R_1COOH + R_2OH + H^+$$

- - protonation
 - makes C
 - better target for Nu

 - step:

• Acid hydrolysis
$$R_1 - C_{O-R_2}$$
 + H^+ $\xrightarrow{\text{fast}}$ $R_1 - C_{O-R_2}$ (1)

makes C
$$R_1$$
 H_2O H_2 H_2

- Base-catalyzed hydrolysis for esters with:
 - electron-withdrawing substituents
 - good leaving groups (low pK_a)
 - R₁ or R₂ as halogens, nitro-, chloro-substituted phenyls

$$R_1COOR_2 + OH^- \Rightarrow R_1COO^- + R_2OH$$

- Base-catalyzed hydrolysis
 - C already very δ +
 - rate-limiting step
 - Nu is OH-
 - departure of leaving group (fast if pK_a is low; slow if pK_a is high)

$$R_1$$
— C + \bigcirc O — R_2 \xrightarrow{fast} R_1 — C + O — C (3)

- Neutral hydrolysis
 - H₂O is a weaker, but more abundant, nucleophile
 - electron-withdrawing substituents
 - good leaving groups (low pK_a)

$$R_1COOR_2 + H_2O \Rightarrow R_1COOH + R_2OH$$

Neutral hydrolysis

- Nu is H₂O
- H₂O more sensitive to
 - presence of electronwithdrawing substituents (δ+ of C)
 - pK_a of the leaving group

$$R_1 - C + H_2O = \frac{\text{slow}}{\text{fast}} \quad R_1 - C - O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$O - R_2 + H_2O = \frac{\text{slow}}{\text{fast}} \quad O - R_2$$

$$R_{1} \xrightarrow{O} C \xrightarrow{O} R_{2} \qquad \qquad \begin{array}{c} OH \\ fast \\ \hline \\ OH_{2} \end{array} \qquad \begin{array}{c} OH \\ \hline \\ slow \end{array} \qquad \begin{array}{c} OH \\ \hline \\ OH \end{array} \qquad \begin{array}{c} OH$$

Hydrolysis $t_{1/2}$ at 25°C for several caboxylic acid esters as a function of solution pH due to changing contributions of the catalysis

Determine the (pseudo-)first-order reaction rate constants, k_h , for this reaction at pH 5.0 and pH 8.5 at 22.5°C using the data sets given below:

pH 5.0 ^a ,	T = 22.5°C	pH 8.5, $T = 22.5$ °C			
Time (min)	[DNPA (μ M)]	Time (min)	[DNPA (μ M)]		
0	100.0	0	100.0		
11.0	97.1	4.9	88.1		
21.5	95.2	10.1	74.3		
33.1	90.6	15.4	63.6		
42.6	90.1	25.2	47.7		
51.4	88.5	30.2	41.2		
60.4	85.0	35.1	33.8		
68.9	83.6	44.0	26.6		
75.5	81.5	57.6	17.3		

^a Note that very similar results were also found at pH 4.0 and 22.5°C.

Answer

Assuming a (pseudo-)first-order rate law, k_h can be determined from a least squares fit of $\ln([DNPA]_t / [DNPA]_0)$ versus time (see also Figure below):

$$ln([DNPA]_t / [DNPA]_0) = -k_h \cdot t \tag{1}$$

The resulting k_h values are:

$$k_h(pH 5.0, 22.5^{\circ}C) = 2.6 \times 10^{-3} \text{ min}^{-1} = 4.4 \times 10^{-5} \text{ s}^{-1}$$

$$k_h(pH 8.5, 22.5^{\circ}C) = 3.1 \times 10^{-2} \text{ min}^{-1} = 5.1 \times 10^{-4} \text{ s}^{-1}$$

Note that k_h increases with increasing pH, indicating that the base-catalyzed reaction is important, at least at higher pH values.

Problem

Using the data given above, derive the rate constants for the neutral (k_N) and base-catalyzed (k_B) hydrolysis of DNPA at 22.5°C. At what pH are the two reactions equally important?

When assuming that the acid-catalyzed reaction is not important in the pH-range considered, Eq. 3-17 simplifies to:

$$k_{\rm h} = k_{\rm N} + k_{\rm B} \cdot [\rm OH^-] \tag{2}$$

The fact that very similar k_h values have been found at pH 4.0 and pH 5.0 indicates that up to pH 5.0, the base-catalyzed reaction can be neglected, and therefore:

$$k_{\rm N}$$
 (22.5°C) = $k_{\rm h}$ (pH 5.0, 22.5°C) = 4.4 × 10⁻⁵ s⁻¹

Using this k_N -value, k_B can be determined by rearranging Eq. 2:

$$k_{\rm B}(22.5^{\circ}{\rm C}) = \frac{k_{\rm h}(\rm pH~8.5, 22.5^{\circ}C) - k_{\rm N}(22.5^{\circ}C)}{\rm [OH^{-}]}$$

with the hydroxide concentration given by (see Eq. 8-18):

$$[OH^-] = \frac{K_w}{[H^+]}$$

Note that the ionization constant of water, K_w , is strongly temperature dependent. At 22.5°C, $K_w = 10^{-14.08}$ (Table D2 in Appendix D). Hence, at pH 8.5 (i.e., [H⁺] = $10^{-8.5}$), [OH⁻] = $10^{-5.58}$ and:

$$k_{\rm B}(22.5^{\circ}{\rm C}) = \frac{4.7 \times 10^{-4}}{10^{-5.58}} = 180 \,{\rm M}^{-1} \,{\rm s}^{-1}$$

The pH value, I_{NB} ,

$$I_{\rm NB} = \log \frac{k_{\rm N}}{k_{\rm B} \cdot K_{\rm w}} = \log \frac{4.4 \times 10^{-5}}{180 \cdot 10^{-14.08}} = 7.5$$

Thus, at pH 8.5, the hydrolysis of DNPA is dominated by the base-catalyzed reaction.

Problem

Derive the Arrhenius activation energy, E_a , for the neutral hydrolysis of DNPA using

T (°C)	$k_{\rm N} / {\rm s}^{-1}$
17.7 22.5 25.0 30.0	3.1×10^{-5} 4.4×10^{-5} 5.2×10^{-5} 7.5×10^{-5}

According to Eq. 12-29, the temperature dependence of a rate constant can be described by:

1/T / K ⁻¹	$\ln k_{\rm N}$ / ${ m s}^{-1}$
0.00344	- 10.38
0.00338	-10.03
0.00335	- 9.86
0.00330	- 9.50

$$\ln k = -\frac{E_{\rm a}}{R} \cdot \frac{1}{T} + \text{const.}$$

Note that for the temperature range considered, E_a is assumed to be constant. Convert temperatures in °C to K and calculate 1/T values. Also take the natural logarithms of the k_N values (see margin).

Perform a least squares fit of $\ln k_N$ versus 1/T. The resulting slope is:

slope =
$$-\frac{E_{a}}{R}$$
 = -6318 K

and therefore:

$$E_a = -R \cdot \text{slope} = 8.31 \cdot (6318) = 52.5 \text{ kJ} \cdot \text{mol}^{-1}$$

The E_a value determined for the base-catalyzed reaction is 60.0 kJ \cdot mol⁻¹ (data not shown).

Problem

Calculate the time required to decrease the concentration of DNPA (see Illustrative Example 13.4) by hydrolysis to 50% (half-life) and to 5% of its initial concentration (a) in the epilimnion of a lake (T = 22.5°C, pH = 8.5), and (b) in the hypolimnion of the same lake (T = 5°C, pH = 7.5).

The hydrolysis half-life is calculated by:

$$t_{1/2} = \frac{\ln 2}{k_{\rm h}} = \frac{0.693}{k_{\rm h}}$$

By analogy, the time required to reduce the concentration to 5% (i.e., $[DNPA]_t$ / $[DNPA]_0 = 0.05$) is given by (see Eq. 1, Illustrative Example 13.4):

$$t_{0.05} = \frac{\ln(1/0.05)}{k_{\rm h}} = \frac{3}{k_{\rm h}} \tag{1}$$

(a) Calculate k_h (Eq. 2, Illustrative Example 13.4) for 22.5°C and pH 8.5 using the above derived k_N and k_B values and [OH⁻] = $10^{-5.58}$ M:

$$k_h (22.5^{\circ}\text{C}) = (180) (10^{-5.58}) + 4.4 \times 10^{-5} = 5.1 \times 10^{-4} \text{ s}^{-1}$$

Note that at pH 8.5 and 22.5°C, hydrolysis is dominated by the base-catalyzed reaction. Insertion of k_h into Eqs. 12-13 and 1 then yields:

$$t_{1/2}(22.5^{\circ}\text{C}) = \frac{0.693}{5.1 \times 10^{-4} \text{ s}^{-1}} = 1360 \text{ s} = 22.7 \text{ min}$$

$$t_{0.05}$$
 (22.5°C) = $\frac{3}{5.1 \times 10^{-4} \text{ s}^{-1}}$ = 5880 s = 1.63 h

(b) Calculate the $k_{\rm N}$ and $k_{\rm B}$ values for 5°C (278.2 K) from the corresponding rate constants derived above for 22.5°C (295.7 K) using (see Eq. 12-30):

$$k(T_1) = k(T_2) \cdot e^{(E_a/R)(1/T_2 - 1/T_1)}$$

where $T_2 = 295.7$ K and $T_1 = 278.2$ K, and E_a is the activation energy given in Illustrative Example 13.4. The results obtained are:

$$k_{\rm N}$$
 (5°C) = 1.1 × 10⁻⁵ s⁻¹ and $k_{\rm B}$ (5°C) = 38.6 M⁻¹ s⁻¹.

Since $K_w = 10^{-14.73}$ at 5°C (Table D2, Appendix D), the OH⁻ concentration at pH 7.5 is $10^{-7.23}$ M, resulting in a k_h -value of:

$$k_h (5^{\circ}\text{C}) = (38.6) (10^{-7.23}) + 1.1 \times 10^{-5} = 1.3 \times 10^{-5} \text{ s}^{-1}$$

Note that in contrast to the epilimnion, in the hypolimnion the hydrolysis of DNAP is dominated by the neutral reaction. The corresponding reaction times are:

$$t_{1/2}(5^{\circ}\text{C}) = \frac{0.693}{1.3 \times 10^{-5} \text{ s}^{-1}} = 53300 \text{ s} = 14.8 \text{ h}$$

$$t_{0.05}$$
 (5°C) = $\frac{3}{1.3 \times 10^{-5} \text{ s}^{-1}}$ = 230000 s = 62.9 h

Hence, under the assumed conditions, DNPA hydrolyzes about 40 times faster in the epilimnion of the lake as compared to the hypolimnion.

Table 13.8 Rate Constants k_A , k_N , and k_B , Half-Lives at pH 7, and I Values for Hydrolysis of Some Carboxylic Acid Esters at 25°C ^a

	Compound O R ₁ - C - O - R ₂							
R ₁	R_2	$(\mathbf{M}^{-1} \ \mathbf{s}^{-1})$	$k_{\rm N} \over ({\rm s}^{-1})$	$(M^{-1} s^{-1})$	t _{1/2} (pH 7)	I _{AN} b.c.e	$I_{ m AB}$ $^{c,\epsilon}$	$I_{ m NB}$ d,e
CH ₃ ~	- CH ₂ CH ₃	1.1×10^{-4}	1.5×10^{-10}	1.1×10^{-1}	2 yr	(5.9)	5.5	(5.1)
CH_3 -	- C(CH ₃) ₃	1.3×10^{-4}		1.5×10^{-3}	140 yr		6.5	
H	-C(CH ₃) ₃	2.7×10^{-3}	1.0×10^{-6}	1.7×10^{0}	7 d	2.6	5.6	7.8
CH ₃ -	$-CH = CH_2$	1.4×10^{-4}	1.1×10^{-7}	1.0×10^{1}	7 d	3.1	(4.6)	6.0
CH ₃ -	$\overline{}$	7.8×10^{-5}	6.6×10^{-8}	1.4×10^{0}	38 d	3.1	(4.8)	6.7
CH ₃	O ₂ N		1.1×10^{-5}	9.4×10^{1}	10 h			7.1
CH ₂ Cl -	- CH ₃	8.5×10^{-5}	2.1×10^{-7}	1.4×10^2	14 h	2.6	(3.9)	5.2
CHCl ₂ –	– CH ₃	2.3×10^{-4}	1.5×10^{-5}	2.8×10^3	40 min	1.2	(3.5)	5.7
CHCl ₂ -	√		1.8×10^{-3}	1.3×10^4	4 min			7.1

^a Data from Mabey and Mill (1978) except for *tert*-butyl formate ($R_1 = H$, $R_2 = C(CH_3)_3$; Church et al., 1999). ^b $I_{AN} = \log (k_A/k_N)$. ^c $I_{AB} = 1/2 \log (k_A/k_BK_w)$. ^d $I_{NB} = \log (k_N/k_BK_w)$. ^e Parentheses indicate that one or both of the processes is too slow to contribute significantly to the overall rate.

Hydrolysis $t_{1/2}$ at 25°C for several caboxylic acid esters as a function of solution pH due to changing contributions of the catalysis

Table 13.9 Comparison of $k_{\rm N}$ and $k_{\rm B}$ Values of Some Carboxylic Acid Esters at 25°C and Influence of Leaving Group and Polar Substituents on $k_{\rm N}$ and $k_{\rm B}$ a

		Relativ		
Compound	pK_a of ROH	$k_{ m N}$	$k_{ m B}$	$k_{\rm B}/k_{ m N} \ ({ m M}^{-1})$
H ₃ CC-O-CH ₂ CH ₃	≈ 16	1	1	7.3×10^{8}
H ₃ C-C-O-	9.98	440	13	2.1×10^7
H_3C-C O	3.96	73000	850	8.5×10^6
H ₂ CCI— C— OCH ₃	≈ 15	1	1	6.6×10^8
HCCI ₂ — C + OCH ₃	≈ 15	71	20	1.9×10^8
HCCI ₂ - C - O	9.98	8600	93	6.3 × 10 ⁶

- Carboxylic acid amides
 - derivatives of formamide HC(=O)NH₂
 - less reactive than carboxylic acid esters
 - because $-NR_2R_3$ is poorer leaving group compared to $-OR_2$ $R_2R_3NH \rightleftharpoons R_2R_3N^- + H^+ pK_a \sim 10$

 acid-catalyzed, base-catalyzed hydrolysis dominate

Carboxylic acid amide nomenclature

Numerous herbicides contain amide group

- Mechanisms
 - base-catalyzed hydrolysis
 - (neutral hydrolysis insignificant)
 - products
 - carboxylic acid
 - amine

$$R_1$$
 O $+$ N R R_1 O $+$ HN R R

- Mechanisms
 - acid-catalyzed hydrolysis
 - amide more basic, accepts proton better
 - I_{AB} of amideI_{AB} of ester

(acid hydrolysis important at higher pHs for amide)

- Carbamates
 - derivatives of carbamic acid
 H₂NC(=0)OH
 - ester and amide combined
 - herbicides, insecticides
 - acid-catalyzed hydrolysis unimportant
 - too acidic, won't protonate
 - products
 - alcohol, HO-R₃
 - amine, HNR₁R₂
 - CO₂

Carbamate nomenclature

$$H_3C$$
 C
 C
 CH_2CH_3
 CH_3

ethyl-N, N-dimethyl carbamate

naphthyl-N-methyl carbamate

- Mechanisms
 - base-catalyzed hydrolysis
 - leaving group controlled by pK_a
 - usually, –OR₃
 has lower pK_a
 than –NR₁R₂

$$\begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_2 \\ R_4 \\ R_5 \\ R_7 \\ R_8 \\ R_8 \\ R_1 \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_3 \\ R_1 \\ R_2 \\ R_2 \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_2 \\ R_1 \\ R_2 \\ R_2 \\ R_1 \\ R_2 \\ R_2 \\ R_3 \\ R_4 \\ R_2 \\ R_2 \\ R_3 \\ R_4 \\ R_4 \\ R_5 \\$$

Mechanisms

In special case of alkaline hydrolysis of N- substituted aryl carbamates another mechanism involving elimination-addition

H.
$$N-C-OR_2$$
 $R_1-N-C=O$ isocyanate primary carbamate H_2O , OH^{-1} R_1 $N+CO_2$ R_1 $N-C-O^{-1}$ R_1 $N-C-O^{-1}$

- Carbamates
 - hydrolysis depends on amide substitution
 - N-substituted
 - alcohol is leaving group
 - very sensitive to alcohol pK_a
 - N,N-substituted
 - much less sensitive to alcohol pK_a

What is the half-life of this carbamate at pH 8?

- leaving group is 4-nitrophenol, pK_a = 7.15
- *N,N*-methylphenyl carbamate:

$$\log k_B = -0.25 p K_a - 1.3$$

$$\log k_B = -0.25 (7.15) - 1.3 = -3.09$$

$$k_B = 10^{-3.09} \text{ M}^{-1} \text{ s}^{-1}$$

What is the half-life of this carbamate at pH 8?

- $k_B = 10^{-3.09} \text{ M}^{-1} \text{ s}^{-1} = 8.2 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$
- $k_h = k_B [OH^-] = 8.2 \times 10^{-10} \text{ s}^{-1}$
- $t_{1/2} = 27 \text{ y}$

What is the half-life of this carbamate at pH 8?

- 4-nitrophenol, pK_a = 7.15
- *N*-phenyl carbamate:

$$\log k_B = -1.15 p K_a + 13.6$$

$$\log k_B = -1.15 (7.15) + 13.6 = 5.38$$

$$k_B = 10^{5.38} \,\text{M}^{-1} \,\text{s}^{-1}$$

What is the half-life of this carbamate at pH 8?

- $k_B = 10^{5.38} = 2.4 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$
- $k_h = k_B[OH^-] = 0.24 \text{ s}^{-1}$
- $t_{1/2} = 3 \text{ s}$

- Phosphoric and thiophosphoric acid esters
 - pentavalent P
 - insecticides, fire retardants
 - two spots for nucleophilic substitution
 - at the phosphorus
 - at the carbon in R₁, R₂, or R₃

$$\begin{array}{c|c}
O \\
\parallel \\
C \\
O
\end{array}$$
 $\begin{array}{c|c}
R_2
\end{array}$

Nomenclature

trimethylphosphate

dimethyl-*S*-(2-ethylmercaptoethyl) dithiophosphate (Thiometon)

diethyl p-nitrophenyl phosphate (Paraoxon)

diethyl *p*-nitrophenyl thiophosphate (Parathion)

Table 13.12 Rate Constants k_A , k_N , and k_B , Half-Lives, $t_{1/2}$, at pH 7, and I_{NB} Values for Hydrolysis of Some Phosphoric and Thiophosphoric Acid Triesters at 25°C a

Compound Name	Structural Formula	k _A b	k _N (s ⁻¹)	$(M^{-1} s^{-1})$	t _{1/2} (pH 7)	$I_{\rm NB}$
Trimethylphosphate	O CH3O)₽—OCH3	NI	1.8 × 10 ⁻⁸	1.6 × 10 ⁻⁴	1.2 yr	10.0
Triethylphosphate	(CH3CH2O)2P—OCH3CH3	NI	$\approx 4 \times 10^{-9}$	8.2×10^{-6}	≈ 5.5 yr	10.7
Triphenylphosphate	$\left(\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - \circ\right)_{2} \stackrel{P}{\leftarrow} \circ - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$	NI	< 3 × 10 ⁻⁹	2.5×10^{-1}	320 d	< 6
Paraoxon	(CH ₃ CH ₂ O) ₂ P—O————NO ₂	NI	7.3×10^{-8}	3.9×10^{-1}	72 d	7.3
Parathion	(CH ₂ CH ₂ O) ₂ O NO ₂	NI	8.3×10^{-8}	5.7 × 10 ⁻²	89 d	8.2
Methylparathion	(CH ₅ O) ₂ P-ONO ₂	NI	1.2×10^{-7}	1.1×10^{-2}	67 d	9.0
Thiometon ^c	(CH ₃ O) ₂ — SCH ₂ CH ₂ SCH ₂ CH ₃	NI	1.1×10^{-7}	6.4×10^{-3}	73 d	9.4
Disulfoton ^c	(CH3CH2O),P—SCH2CH2CH3	NI	1.4×10^{-7}	2.0×10^{-3}	57 d	10.0
Diazoxon ^c	(CH ₃ CH ₂ O) ₂ P-O-	6.5 × 10 ⁻¹	2.8×10^{-7}	7.6 × 10 ⁻²	23 d	8.6 ^d
Diazinon ^c	(CH ₃ CH ₂ O) ₂ P-O-N-N	2.1 × 10 ⁻²	4.3 × 10 ⁻⁸	5.3 × 10 ⁻³	178 d	8.9 °

^a Data from Faust and Gomaa (1972), Mabey and Mill (1978), and Wanner et al. (1989). ^b NI = not important. ^c At 20°C. ^d I_{AN} = 6.4. ^e I_{AN} = 5.7.

Mechanisms

- nucleophile attacks P
 - Base-catalyzed
 - OH⁻ stronger nucleophile than H₂O
- nucleophile attacks C
 - Neutral reaction
 - usually H₂O

$$\begin{array}{c|c}
O(S) & O(S) \\
R_1O & P & O(S) \\
R_2O & O(S) \\
R_3 + Nu & P & P \\
R_1O & P & O(S) \\
R_1O & P & O(S) \\
R_1O & P & O(S) \\
R_2O & O(S) \\
R_1O & P & O(S) \\
R_2O & O(S) \\
R_3 + Nu & P & O(S) \\
R_1O & P & O(S) \\
R_1O & P & O(S) \\
R_2O & O(S) \\
R_3 + Nu & P & O(S) \\
R_1O & P & O(S) \\
R_1O & P & O(S) \\
R_1O & P & O(S) \\
R_2O & O(S) \\
R_3 + Nu & P & O(S) \\
R_1O & P & O($$

Thiophosphoric acid thioester

• internal nucleophilic substitution (S_Ni)

An acaricide and insecticide

Esercizio

Hydrolysis of Chlorinated Ethanes Which compound will hydrolyze fastest?

$$C. \qquad CI \longrightarrow C \longrightarrow C$$

Fastest?

greatest $k_{h'}$ shortest half-life

Hydrolysis of Chlorinated Ethanes

		1,1,2,2-	1,1,1,2-	
		tetrachloro-	tetrachloro-	pentachloro-
epilimnion	<i>k_N</i> (s ⁻¹)	1x10 ⁻¹⁰	4x10 ⁻¹⁰	8x10 ⁻¹⁰
25 C	$k_B (M^{-1} s^{-1})$	5x10 ⁻¹	3.5x10 ⁻⁴	$2.7x10^{1}$
pH 8.5	$k_B [OH^{-}] (s^{-1})$	1.6x10 ⁻⁶	1.1x10 ⁻⁹	8.5x10 ⁻⁵
$[OH^{-}] = 10^{-5.5} M$	$k_h (s^{-1})$	1.6x10 ⁻⁶	1.5x10 ⁻⁹	8.5x10 ⁻⁵
$K_w = 10^{-14.00}$	t _{1/2} (s)	$4.3x10^5$	$4.6x10^8$	8,200
	$t_{1/2}$ (d)	5.0	5,300	0.094
	, I _{NB}	4.3	8.1	3.5
hypolimnion	k_{N} (s ⁻¹)	6.7x10 ⁻¹²	2.5x10 ⁻¹¹	5.1x10 ⁻¹¹
5 C	$k_B (M^{-1} s^{-1})$	5.2x10 ⁻²	1.9x10 ⁻⁵	$2.7x10^{0}$
pH 7.5	k_{B} [OH ⁻] (s ⁻¹)	3.0x10 ⁻⁹	1.1x10 ⁻¹²	1.6x10 ⁻⁷
$[OH^{-}] = 10^{-7.23} M$	$k_h (s^{-1})$	3.0x10 ⁻⁹	2.6x10 ⁻¹¹	1.6x10 ⁻⁷
$K_w = 10^{-14.73}$	t _{1/2} (s)	$2.3x10^8$	$2.7x10^{10}$	4.3x10 ⁶
	$t_{1/2}^{'}$ (d)	2,700	310,000	50
	, I _{NB}	5.0	8.8	4.0

Hydrolysis of Chlorinated Ethanes

- Major products and mechanisms
 - 1,1,2,2-tca ⇒ trichloroethene
 - E₂ elimination, second-order
 - low I_{NB} (4.3): acidic, promotes elimination
 - 1,1,1,2-tca \Rightarrow 1,1,2-trichloroethanol(?)
 - S_N2 nucleophilic substitution, second order
 - high I_{NB} (8.1): elimination unlikely

- pentachloroethane ⇒ tetrachloroethene
 - E₂ elimination, second-order
 - even lower I_{NB} (3.5) promotes elimination