

Analisi avanzate della regressione: la mediazione

(Cap. 7 e 5)

Marcello Gallucci

marcello.gallucci@unimib.it

AMD

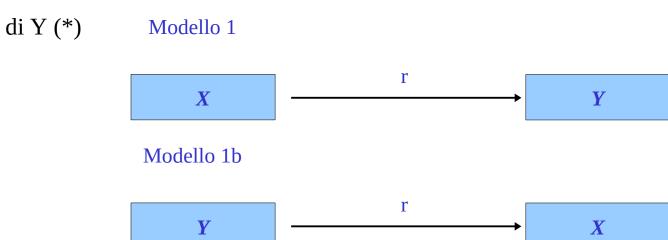
Struttura delle relazioni

La relazione più semplice che conosciamo è la correlazione fra due variabili

- ◆ Le due variabili si muovono insieme: al cambiare dei valori di X cambiano (in media) i valori di Y
- ◆ X è un predittore di Y: sapendo i valori di X possiamo stimare i valori di Y
- ◆ X ha un effetto su Y: modificando i valori di X possiamo modificare i valori di Y

Struttura causale delle relazioni

X ha un effetto su Y: modificando i valori di X possiamo modificare i valori



- Una relazione statistica non prova mai una relazione causale: l'ipotesi causale va giustificata con:
 - Metodo sperimentale
 - Metodi temporali (longitudinali)
 - Teoria

Relazione Funzionale vs. Causa-effetto

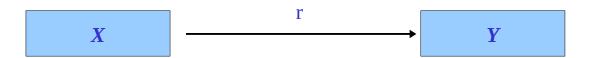
 Quando diciamo che una variabile ne "spiega" un'altra, intendiamo dire che stiamo cercando di stabilire una relazione <u>funzionale</u>

• Una relazione funzionale non e' necessariamente una relazione di causa-effetto. La variabile "spiegata" varia in <u>funzione</u> della variabile che spiega ma <u>non</u> necessariamente quest'ultima e' anche la *causa*

Una relazione statistica non e' necessariamente una relazione causale

Struttura delle relazioni

Le relazioni possibili diventano più interessanti strutturalmente quando siamo in presenza di tre o più variabili

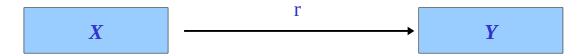


◆ Una terza variabile può **intervenire** in vari modi nella relazione tra una variabile indipendente (IV) ed una dipendente (DV)

Z

Mediazione e Moderazione

L'analisi della **mediazione** e l'analisi della **moderazione** servono a comprendere come una (o più) terze variabili intervengono nella relazione tra due (o più) variabili.



◆ Attengono cioè allo studio della **struttura delle relazioni**: come le relazioni tra X e Y sono influenzate da Z

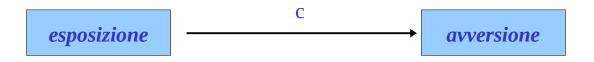
Z

Esempio

- Supponiamo di voler testare se una campagna pubblicitaria abbia avuto effetto in quanto rende salienti i rischi associati al fumo.
- ◆ Abbiamo misurato *l'esposizione* alla campagna mediante un test di ricordo delle immagini e spot della campagna, *l'avversione* al fumo mediante questionario, la percezione del *rischio* associata al fumo, ed il *genere* dei partecipanti.
- ◆ Ipotesi iniziale: una maggiore esposizione alla campagna incrementa l'avversione al fumo

Capire meglio gli effetti

Supponiamo di aver trovato una relazione tra esposizione e avversione .



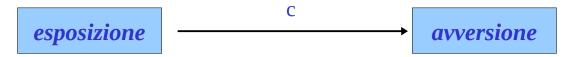
◆ L'analisi (logica per ora) della **mediazione** e della **moderazione** ci aiutano a capire meglio questa relazione grazie all'intervento di altre variabili, cioè *rischio* (percezione dei rischi) e *genere* (sesso)

rischio

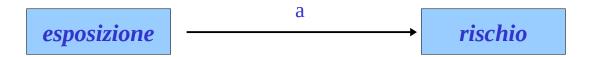
genere

Esempio 1

Supponiamo di aver trovato una relazione tra esposizione e avversione.

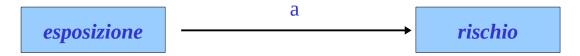


- Possiamo domandarci perché esposizione abbia un effetto su avversione
 - ◆ Possiamo ipotizzare che coloro che sono stati maggiormente esposisti sviluppino una maggiore percezione del rischio del fumo

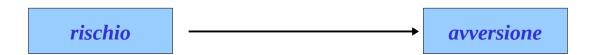


Quesito sul perchè

- Possiamo domandarci perché esposizione abbia un effetto su avversione
 - ◆ Possiamo ipotizzare che coloro che sono più esposti alla campagna sviluppino una percezione del rischio più alta

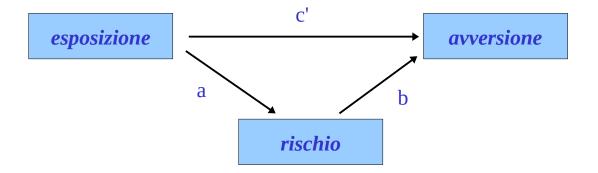


E che avere una percezione maggiore implichi maggiore avversione al fumo



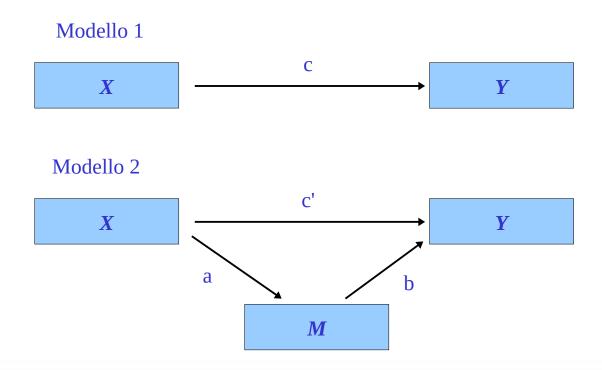
Esempio

◆ E dunque, uno dei motivi per cui esposizione ha un effetto sull'avversione, è che esposizione aumenta la percezione del rischio (rischio), e la percezione del rischio aumenta l'avversione



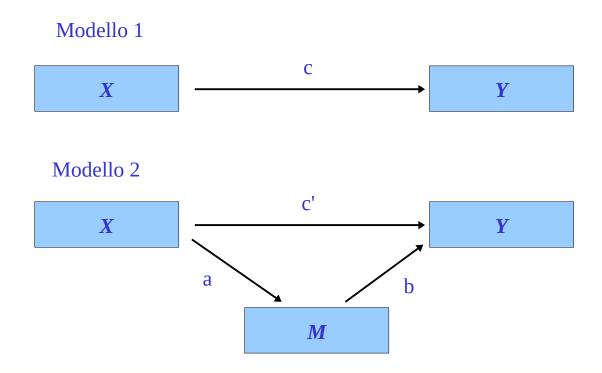
In generale

◆ In presenza di una relazione tre una IV (X) e una VD (Y), possiamo domandarci se uno dei motivi per cui osserviamo un effetto è l'intervento di una terza variabile M, che è responsabile (in parte o del tutto) dell'effetto originale



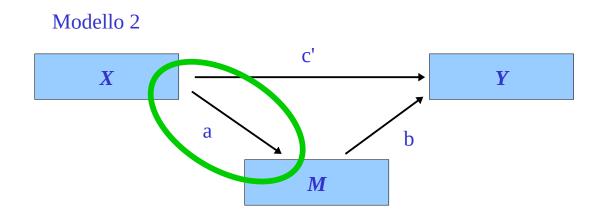
Modello di mediazione

◆ Il modello di mediazione (semplice) prevede che il processo per cui una variabile X ha un effetto su Y sia descrivibile come segue: X ha un effetto su M, M ha un effetto su Y, e perciò X ha un effetto su Y per via dell'intervento di M.



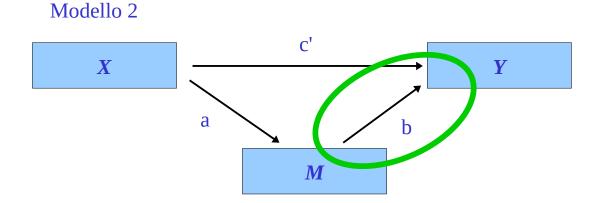
Caratteristiche del mediatore

- ◆ Il modello (logico) di mediazione regge se la variabile mediatore possiede alcune caratteristiche:



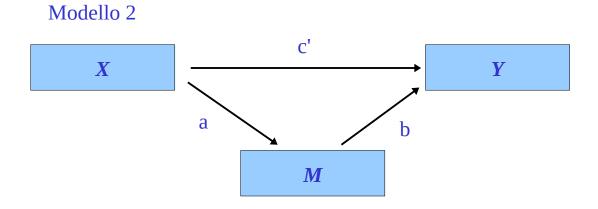
Caratteristiche del mediatore

- ◆ Il modello (logico) di mediazione regge se la variabile mediatore possiede alcune caratteristiche:
 - M deve poter causare (o almeno modificare logicamente) Y La percezione rischio deve poter far cambiare l'avversione



Mediazione

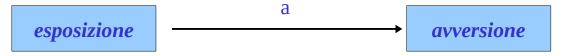
◆ Se queste caratteristiche sono rispettate (per ora solo logicamente), siamo in presenza di una variabile mediatore, e dunque di un valido modello di mediazione



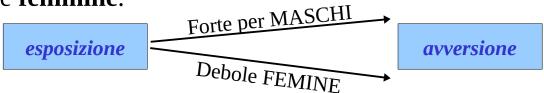
◆ L'effetto di mediazione sarà quella parte dell'effetto di X su Y che passa per M, cioè che è portato da X ad Y attraverso M

Quesito sul "chi"

◆ Possiamo anche domandarci **per chi, o in quali condizioni**, esposizione abbia un effetto su avversione

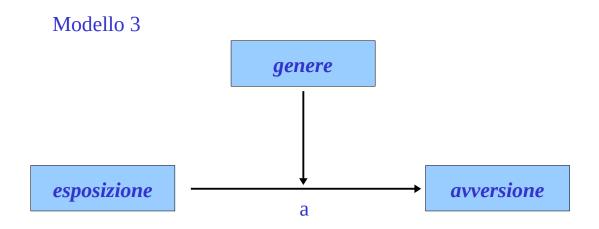


- Possiamo ipotizzare che l'effetto di esposizione non sia uguale per tutti, ma che sia più o meno forte a seconda del genere
- ◆ Ad esempio che l'effetto di esposizione sia più forte per i **maschi**, e più debole per le **femmine**.



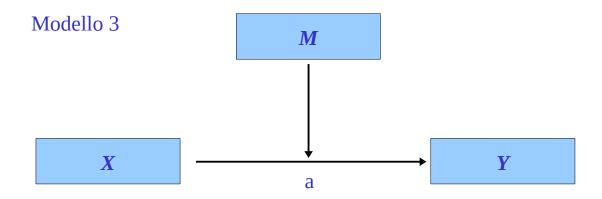
Moderazione

- ◆ Cioè ipotizziamo che l'effetto di esposizione su rischio **non sia uguale per tutti**, ma la sua intensità cambi (e.g. cresce) al variare di *genere*
- Ipotizziamo che l'effetto di X su Y varia per diversi livelli di M



Moderazione

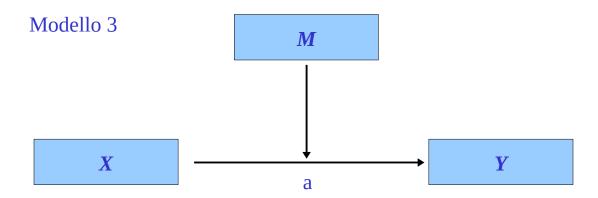
◆ Se l'intensità dell'effetto di X su Y cambia al variare dei livelli (valori) di un variabile M, diremo che M è un moderatore dell'effetto di X su Y, e che l'effetto di X su Y è condizionale ai valori di M



Caratteristiche del moderatore

◆ Il modello (logico) di moderazione regge se la variabile moderatore possiede alcune caratteristiche:

- M deve poter cambiare l'intensità dell'effetto tra X e Y genere descrive persone differenti che possono essere più o meno sensibili al esposizione
- M non è generalmente causato da X genere e non dipende dal esposizione



Mediazione vs Moderazione

◆ I due modelli teorici sono **molto differenti** ed (quasi sempre) mutualmente

escludantasi

Mediatore

- * Risponde alla damanda: "perchè"
- * Deve essere causato da X
- * Non modifica l'effetto, lo assorbe

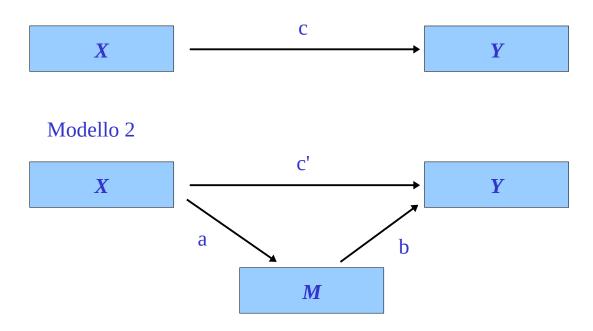
Moderatore

- * Risponde alla domanda: "chi", "in quali condizioni"
- * Può essere indipendente da X
- * Modifica l'effetto

Analisi della mediazione statistica

La mediazione

In presenza di una relazione tre una IV (X) e una VD (Y), possiamo domandarci se uno dei motivi per cui osserviamo un effetto è l'intervento di una terza variabile M, che è responsabile (in parte o del tutto) dell'effetto originale Modello 1



Esempio: SPSS

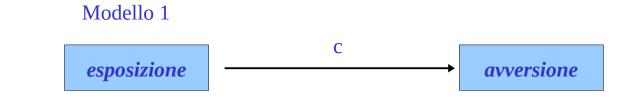
- Supponiamo di voler testare se una campagna pubblicitaria abbia avuto effetto in quanto rende salienti i rischi associati al fumo.
- ◆ Ipotesi: una maggiore esposizione alla campagna incrementa l'avversione al fumo in quanto rende salienti i rischi del fumo, e la salienza dei rischi aumenta l'avversione al fumo.

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
esposizione	100	.000	5.000	3.08531	.907278
rischio	100	10.000	100.000	50.15100	20.204487
avversione	100	-100.000	100.000	4.70400	33.899519
Valid N (listwise)	100				

Quesito sul perchè

Supponiamo di aver trovato una relazione tra esposizione e avversione.



- Per spiegare il perché esposizione abbia un effetto su avversione
 - 1) Possiamo ipotizzare che coloro che sono stati più esposti alla campagna (alti punteggi di *esposizione*), abbiano una maggiore consapevolezza dei rischi (alta *rischio*

perc.)

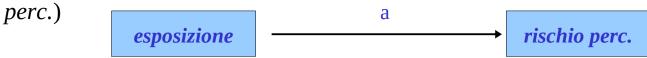
esposizione

a

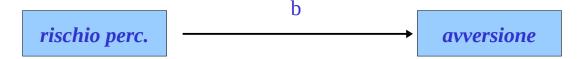
rischio perc.

Quesito sul perchè

- ◆ Per spiegare il perché esposizione abbia un effetto su avversione:
 - 2) Possiamo ipotizzare che coloro che sono stati più esposti alla campagna (alti punteggi di *esposizione*), abbiano una maggiore consapevolezza dei rischi (alta *rischio*

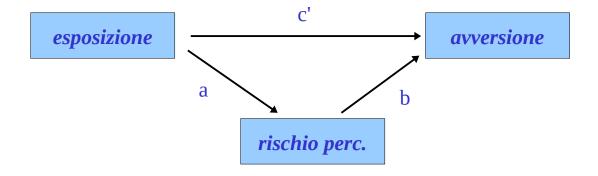


3) E che avere maggiore consapevolezza dei rischi porti a maggiore avversione



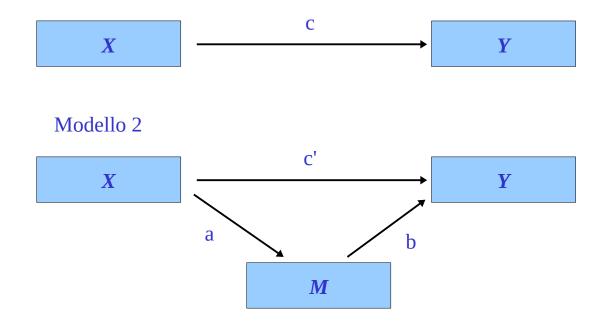
Esempio

◆ E dunque, uno dei motivi per cui *esposizione* ha un effetto su *avversione*, è che *esposizione* influenza *rischio percepito*, e rischio percepito aumenta l'*avversione*



Modello di mediazione

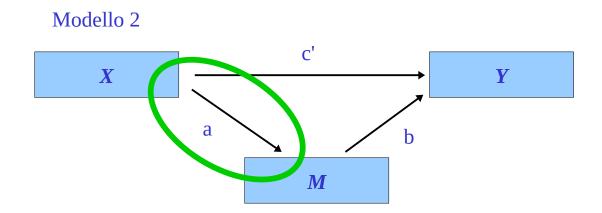
Il modello di mediazione (semplice) prevede che il processo per cui una variabile X ha un effetto su Y è descrivibile come segue: X ha un effetto su M, M ha un effetto su Y, e perciò
 X ha un effetto su Y per via dell'intervento di M. Modello 1



Caratteristiche del mediatore

• Il modello (logico) di mediazione regge se la variabile mediatore possiede alcune caratteristiche:

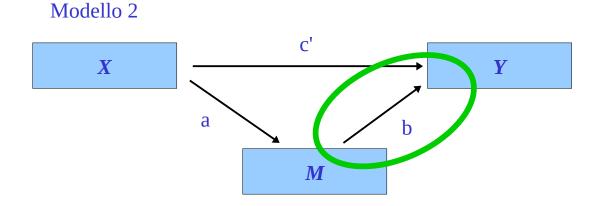
• M deve poter essere causata (o almeno dipendere logicamente) da X



Caratteristiche del mediatore

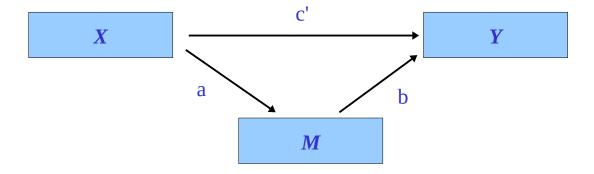
• Il modello (logico) di mediazione regge se la variabile mediatore possiede alcune caratteristiche:

- M deve poter causare (o almeno modificare logicamente) Y
- M deve poter causare Y indipendentemente da X



Mediazione Statistica

 Se queste caratteristiche sono logicamente, possiamo stimare gli effetti mediante una serie di regressioni e quantificare il modello

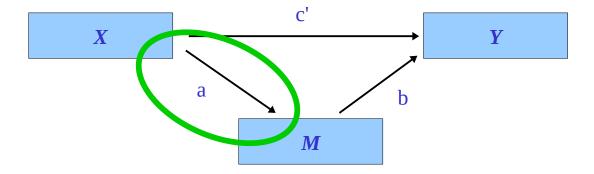


• La mediazione statistica stima e quantifica un modello di mediazione, ovviamente non è in grado di giustificarne la logica

Condizioni statistiche

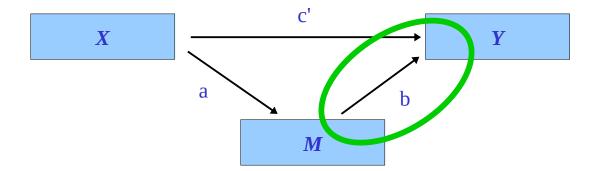
Il modello (statistico) di mediazione regge se si verificano le seguenti condizioni:

- X esercita un effetto non nullo sulla variabile mediatore M
 - L'effetto si ottiene con un regressione semplice con X come IV e Y come DV
 - Il coefficiente che si ottiene deve essere non nullo



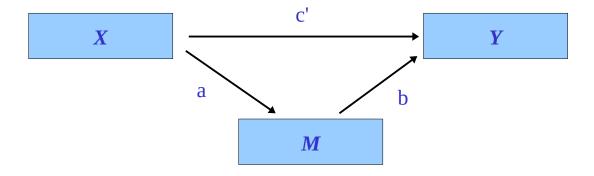
Condizioni statistiche

- Il modello (statistico) di mediazione regge se si verificano le seguenti condizioni:
 - ullet M esercita un effetto non nullo su Y, tenendo costante $\, X \,$
 - \bullet L'effetto si ottiene con un regressione multipla con Y come DV e X e M come IV
 - Il coefficiente che si ottiene deve essere non nullo



L'effetto mediato

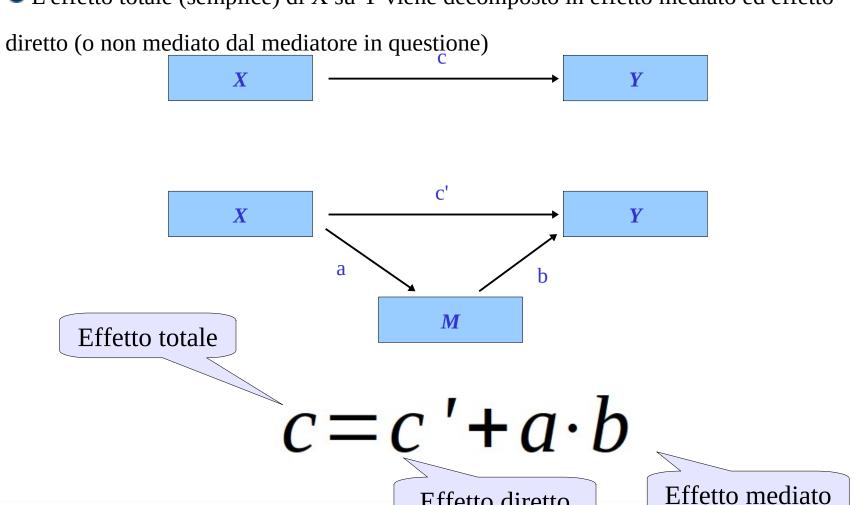
• L'effetto mediato da M rispetto all'effetto di X su Y sarà dato dal prodotto dei coefficienti relative alla parte mediazionale del modello



$$EM = a \cdot b$$

Decomposizione dell'effetto

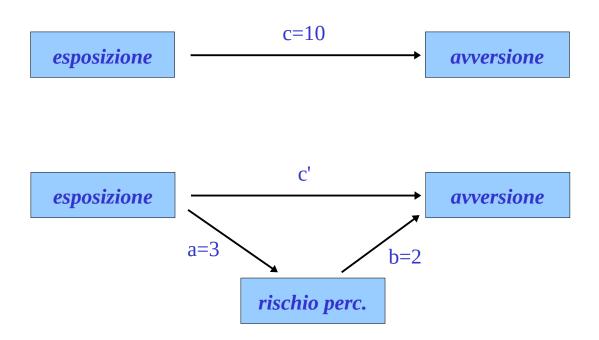
L'effetto totale (semplice) di X su Y viene decomposto in effetto mediato ed effetto



Effetto diretto

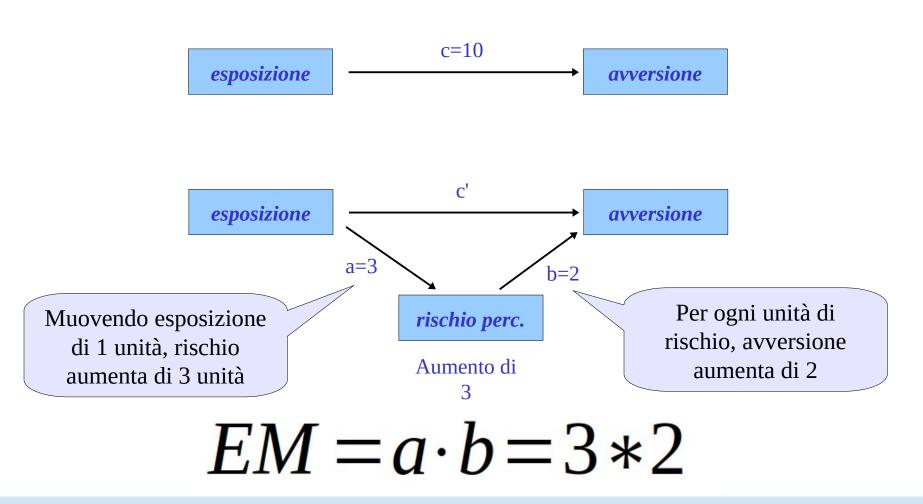
Esempio (dati inventati)

Supponiamo che i coefficienti delle regressioni siano i seguenti



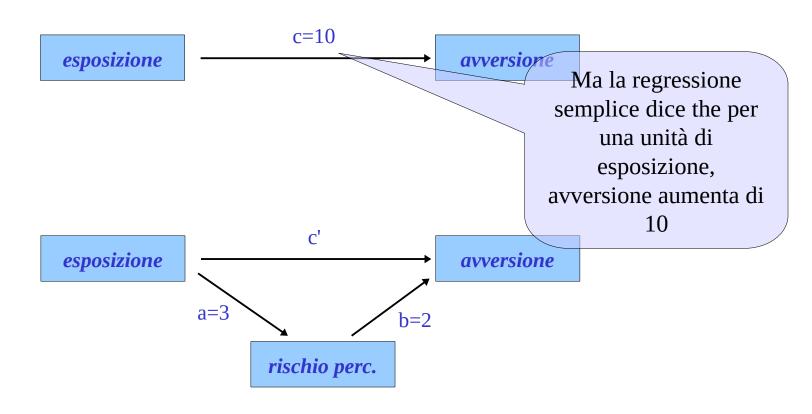
Decomposizione dell'effetto

Supponiamo che i coefficienti delle regressioni siano i seguenti



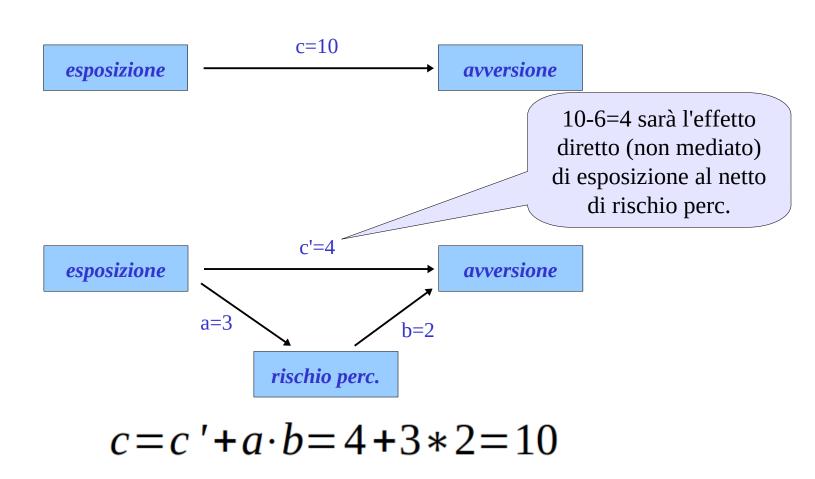
Decomposizione dell'effetto

Supponiamo che i coefficienti delle regressioni siano i seguenti



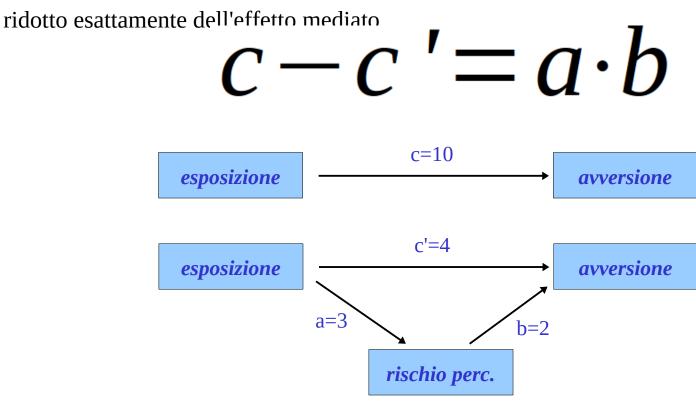
Decomposizione dell'effetto

Supponiamo che i coefficienti delle regressioni siano i seguenti



Riduzione dell'effetto

Ciò implica che l'effetto diretto di X su Y sarà ridotto rispetto all'effetto totale, e sarà



Effetto di mediazione

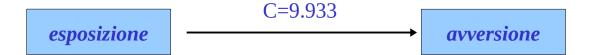
Diremo che c'è un effetto mediato se il prodotto a*b è diverso da zero

$$a \cdot b \neq 0$$

Vedremo che non è così semplice stabilirlo!

Modello 1

◆ In primo luogo stimiamo la relazione semplice tra la variabile esogena e quella dipendente



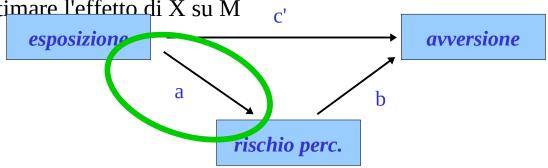
Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-25,943	11.697		-2.218	.029
	esposizione	9.933	3.639	.266	2.730	.008

a. Dependent Variable, evversione

Esempio (dati veri)

◆ Seconda regressione, per stimare l'effetto di X su M



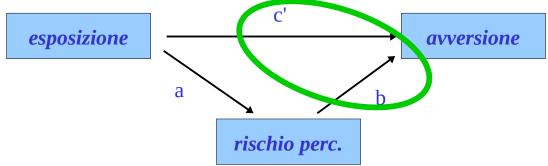
 $Coefficients^{\underline{a}}$

		Unstandardize	d Coefficients	Standardized Coefficients		a=5
Model		В	Std. Error	Beta	1	Sig.
1	(Constant)	33.115	7.006		4.727	.000
	esposizione	5.522	2.179	.248	2.534	.013

a. Dependent Variable: rischio

Esempio (dati veri)

→ Terza regressione, per stimare l'effetto di c' e b



Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients		
Model	,	В	Std. Error	Beta	t	Sig.
1	(Constant)	73.668	6.577		-11.200	.000
	esposizion.	1.975	1.906	.053	1.036	.303
	rischio	1.441	.086	.859	16.839	.000

a. Dependent Variable: avversione

Effetto mediato

◆ L'effetto mediato è quella parte dell'effetto semplice che influenza la variabile dipendente attraverso l'effetto della variabile mediatrice

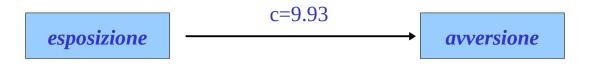
$$E_{y.m.x} = a \cdot b = b_{mx} \cdot b_{ym.x}$$

◆ L'effetto mediato rappresenta la riduzione dell'effetto di una variabile esogena, dopo aver parzializzato l'effetto della variabile mediatrice

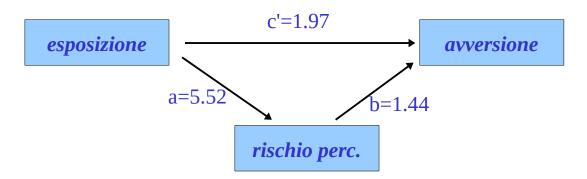
$$E_{y.m.x} = c - c' = b_{yx} - b_{yx.m}$$

Effetto mediato

Sulla base dei risultati



$$EM = 9.93 - 1.97 = 7.96$$



$$EM = 5.52 \cdot 1.44 = 7.96$$

Effect size dell'effetto mediato

 Per riportare un effect size si può standardizzare le variabili e ottenere un effetto mediato standardizzato

Oppure esesposizionere l'effetto mediato come propozione (approssimata) dell'effetto

totale

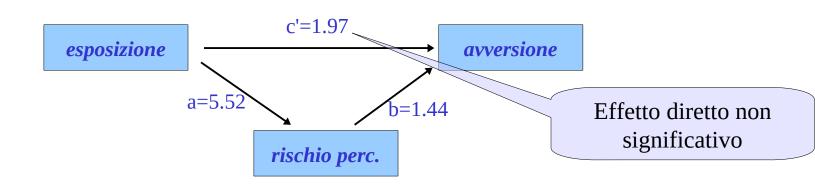
$$pEM = \frac{a \cdot b}{c}$$

$$pEM = \frac{7.96}{9.93} = .801$$

Circa l'80% dell'effetto di *esposizione* su *avversione* è mediato da *risk*

Mediazione parziale o totale

- Alcuni autori parlano di mediazione parziale quanto c' è comunque significativo
- E di mediazione totale quando c' non è significativo.



Significatività!

- Per decidere se il nostro effetto mediato dobbiamo operare un test inferenziale su a*b
- Vi sono molti test, tra cui il Sobel Test, Aroian test, Goodman test, che si differenziano nel come stimano l'errore standard
- Un'alternativa valida è usare il metodo bootstraap
- Esistono vari plug-in per calcolare la significatività dell'effetto mediato in SPSS (vedi esercitazioni) con precisione
- Se sia a che b sono significativi, l'effetto mediato sarà da considerarsi significativo

Inferenza sull'effetto mediato

 Sebbene non sia il metodo più preciso, possiamo comunque basarci sulle significatività dei coefficienti

L'effetto mediato sarà statisticamente diverso da zero se i suoi componenti (**a** e **b**) saranno statisticamente diversi da zero

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	33.115	7.006		4.727	.000	
	esposizione	5.522	2.179	.248	2.534	.013	

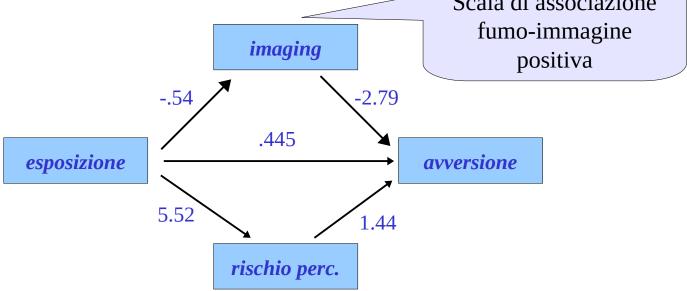
a. Dependent Variable: rischio

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-73.668	6.577		-11.200	.000
	esposizione	1.975	1.906	.053	1.036	.303
	rischio	1.441	.086	.859	16.839	.000
a. D						

Mediazione multipla

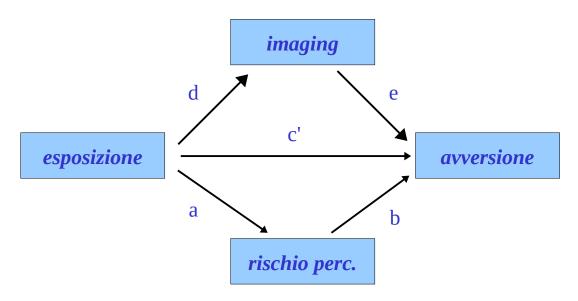
E' possibile estendere il modello di mediazione a più di un mediatore! Scala di associazione



- L'effetto mediato per ogni mediatore si calcola come nella mediazione semplice
- L'effetto mediato totale è la **somma** degli effetti mediati dai mediatori

Mediazione multipla

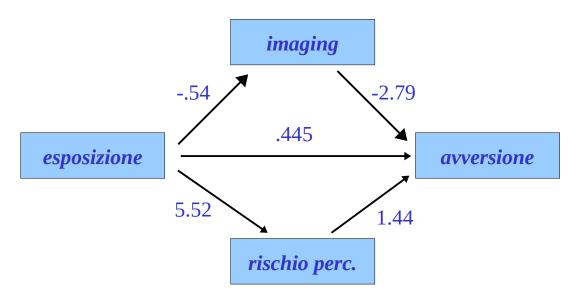
E' possibile estendere il modello di mediazione a più di un mediatore!



$$EM_{risk} = a \cdot b$$
 $EM_{imag} = d \cdot e$
 $EM_{tot} = a \cdot b + d \cdot e$

Mediazione multipla

E' possibile estendere il modello di mediazione a più di un mediatore!

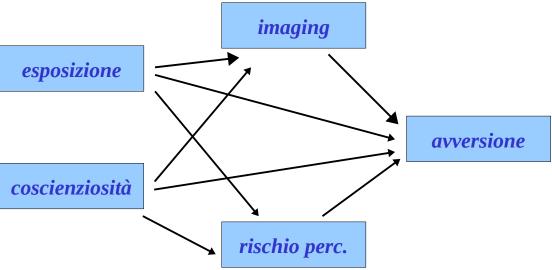


$$EM_{risk} = 7.96$$
 $EM_{imag} = 1.52$

$$EM_{tot} = 9.48$$

Path analysis

Che può essere esteso facilmente



- Una regressione per ogni variabile che riceve una freccia
- DV riceve la freccia, IV mandano la freccia
- \bullet L'effetto mediato è sempre il prodotto tra path IV \rightarrow Med e Med \rightarrow DV

Fine

