
Graph Theory
and Algorithms

Ph.D. Course – Marco Viviani

Walks, Paths, Trails, Cycles, Circuits,
Connectivity and related Issues

(April 15, 2021 / 14:30-16:30)

TABLE OF CONTENTS

A QUICK RECAP
Recap of basic notions1.

SOME TRIVIAL DEFINITIONS
Null, Empty, and Complete
Graphs

2.

WALKING ON A GRAPH
Walks, Paths, Trails, Cycles,
and Circuits

3.

ALGORITHMS
Dijkstra’s and Floyd-
Warshall algorithms,
Random Walks

4.

CONNECTIVITY
Eulerian and Hamiltonian
Graphs, The Travelling
Salesperson Problem

5.

POSSIBLE ASSIGNEMENTS6.

A Quick Recap
Recap of Basic Notions

1

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

A Quick Recap

• A graph is a pair 𝐺 = (𝑉, 𝐸) of sets such that 𝐸 ⊆ 𝑉 2; thus, the
elements of 𝐸 are 2-element subsets of 𝑉.

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}
𝐸 = {{𝑣𝑖 , 𝑣𝑘}} 𝑖, 𝑘 ∈ [1,… , 𝑛]

• The elements of 𝑉 are the vertices (or nodes, or points) of the graph 𝐺,
the elements of 𝐸 are its edges (or lines, or arcs).

• The usual way to represent a graph is by drawing a dot for each
vertex and joining two of these dots by a line if the corresponding two
vertices form an edge.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

A Quick Recap … Cont’d

• The graph 𝐺 on:

𝑉 = {1, . . . , 7} with edge set 𝐸 = {{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}}

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

A Quick Recap … Cont’d

• Two vertices 𝑥, 𝑦 of 𝐺 are adjacent (or neighbors), if 𝑒 = {𝑥, 𝑦} is an
edge adjacent of 𝐺.

• Two edges 𝑒 ≠ 𝑓 are adjacent if they have an end in common.

𝑥

𝑦
𝑒

𝑥

𝑦
𝑒 𝑓

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

A Quick Recap … Cont’d

• Order of a graph: its number of vertices |𝑉|.

• Size of a graph: its number of edges |𝐸|.

𝐺 = 𝑉, 𝐸 → 𝑉 = 1, . . . , 7 , 𝐸 = {{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}}

𝑉 = 7

𝐸 = 5

Some Trivial
Definitions
Null and Complete Graphs

2

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Null Graph

• In the mathematical field of graph theory, the term null graph may
refer either to the order-zero graph, or alternatively, to any edgeless
graph.

• The latter is sometimes called an empty graph.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Null Graph (Order-zero Graph)

• The order-zero graph, denoted as 𝐾0, is the unique graph having no
vertices (hence its order is zero).

• It follows that 𝐾0 also has no edges.

• For the order-zero graph 𝐾0 = 𝐺 = (∅, ∅) we simply write 𝐺 = ∅.

• A graph of order 0 (or 1) is called trivial.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Null Graph (Empty Graph)

• For each natural number 𝑛, the edgeless graph (or empty graph) 𝐾𝑛
of order 𝑛 is the graph with 𝑛 vertices and zero edges.

• 𝐾𝑛 = 𝐺 = 𝑉, ∅ .

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Null Graph (Representations)

• Figure (𝒂) illustrates the null (oreder-zero) graph 𝐾0, while (𝒃) the null
graph (empty graph) 𝐾6 with six vertices.

(a) (b)

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Complete Graph

• A graph in which each pair of distinct vertices are adjacent is called a
complete graph.

• A complete graph with 𝑛 vertices is denoted by 𝐾𝑛.

• 𝐾𝑛 contains 𝑛 𝑛 − 1

2
edges.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Complete Graphs … Cont’d

• Figure (𝒃) illustrates a complete graph 𝐾6 with six vertices.

(a) (b)

Walking on a
Graph

Walks, Paths, Trails, Cycles,
and Circuits

3

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Walk

• A walk (of length 𝑘) in a graph 𝐺 is a non-empty alternating sequence

𝑣0𝑒0𝑣1𝑒1 . . . 𝑒𝑘−1𝑣𝑘

of vertices and edges in 𝐺 such that 𝑒𝑖 = {𝑣𝑖 , 𝑣𝑖+1} for all 𝑖 < 𝑘.

• The length of a walk is 𝑘.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Walk (Example)

• We often refer to a walk by the natural sequence of its vertices.

• The walk is denoted as 𝑎𝑏𝑐𝑑𝑏.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Open / Closed Walk

• If the starting vertex is the same as the ending vertex, that is 𝑣0 = 𝑣𝑘 ,
the walk is closed.

• A walk is considered open otherwise.

• 𝑐𝑒𝑔𝑓𝑐 is a closed walk.

• If length of the walk = 0, then it is called
as a trivial walk.

• Both vertices and edges can repeat in
a walk whether it is an open or a closed walk.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Path

• A path is a non-empty graph 𝑃 = (𝑉, 𝐸) of the form:

𝑉 = 𝑥0, 𝑥1, … , 𝑥𝑘
𝐸 = { 𝑥0, 𝑥1 , {𝑥1, 𝑥2},… , {𝑥𝑘−1, 𝑥𝑘}}

where the 𝑥𝑖 are all distinct.

• The vertices 𝑥0 and 𝑥𝑘 are called the end-vertices or ends of 𝑃.

• The vertices 𝑥1, … , 𝑥𝑘−1 are the inner vertices of 𝑃.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Path (Example)

• A path 𝑃 = 𝑃6 in 𝐺

• 𝑃 𝑉, 𝐸 → 𝑉 = 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ , 𝐸 = { 𝑏, 𝑐 , 𝑐, 𝑑 , 𝑑, 𝑒 , 𝑒, 𝑓 , 𝑓, 𝑔 , 𝑔, ℎ }

𝑎
𝑏

𝑐
ℎ

𝑑
𝑒

𝑓

𝑔

𝑏

𝑐
ℎ

𝑑
𝑒

𝑓

𝑔

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Path (A Simpler Definition)

In graph theory, a path is defined as an open walk in which:

• Neither vertices are allowed to repeat.

• Nor edges are allowed to repeat.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Path … Cont’d

• The number of edges of a path is its length.

• The path of length 𝑘 is denoted by 𝑃𝑘 .

• We often refer to a path by the natural sequence of its vertices,
writing, say, 𝑃 = 𝑥0𝑥1…𝑥𝑘 , and calling 𝑃 a path from 𝑥0 to 𝑥𝑘 (as well as
between 𝑥0 and 𝑥𝑘).
• More precisely, by one of the two natural sequences: 𝑥0𝑥1…𝑥𝑘 and 𝑥𝑘𝑥𝑘−1…𝑥0,

we denote the same path.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Path (Example)

• A path 𝑎𝑏𝑐𝑑𝑒 (𝒂) and … what about 𝑎𝑏𝑐𝑑𝑒𝑐 (𝒃)?

(a) (b)

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Trail

In graph theory, a trail is defined as an open walk in which:

• Vertices may repeat.
• Edges are not allowed to repeat.

• 𝑎𝑏𝑐𝑑𝑒𝑐 is a trail.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Weight of a Walk (a Path, a Trail)

• RECAP: a weighted graph associates a value (weight) with every
edge in the graph.

• The weight of a walk (or trail or path) in a weighted graph is the sum
of the weights of the traversed edges.

• Sometimes the words cost, or length, are used instead of weight.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Directed Walk, Path, Trail

• A directed walk is a sequence of edges directed in the same
direction which joins a sequence of vertices.

• A directed path is a directed walk in which all vertices are distinct.

• A directed trail is a directed walk in which all edges are distinct.

• A weighted directed graph associates a value (weight) with every
edge in the directed graph.

• The weight of a directed walk (or trail or path) in a weighted
directed graph is the sum of the weights of the traversed edges.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Cycle

A possible formal definition

• If 𝑃 = 𝑥0…𝑥𝑘−1 is a path and 𝑘 ≥ 3, then the graph 𝐶 = 𝑃 + 𝑥𝑘−1𝑥0 is
called a cycle.

More simply… In graph theory, a cycle is defined as a closed walk in
which:

• Neither vertices (except possibly the starting and ending vertices) are
allowed to repeat.

• Nor edges are allowed to repeat.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Cycle … Cont’d

• As with paths, we often denote a cycle by its (cyclic) sequence of
vertices.

• A cycle 𝐶 might be written as 𝑥0…𝑥𝑘−1𝑥0.

• The length of a cycle is its number of edges (or vertices).

• The cycle of length 𝑘 is called a 𝑘-cycle and denoted by 𝐶𝑘 .

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Cycle … Cont’d

• The minimum length of a cycle (contained) in a graph 𝐺 is the girth
(calibro) 𝑔(𝐺) of 𝐺.

• The maximum length of a cycle in 𝐺 is its circumference 𝑐(𝐺).

• If 𝐺 does not contain a cycle, we set the former to ∞, the latter to zero.
• 𝑔(𝐺) = ∞
• 𝑐(𝐺) = 0

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Cycle (Example)

• The closed walk 𝑏𝑐𝑔𝑓 is a cycle.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Cycle … Cont’d

• A cycle is odd if its length is odd.

• A cycle is even if its length is even.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Bipartite Graps and Cycles

RECAP: In graph theory, a bipartite graph is a
graph where:

• Vertices can be divided into two disjoint and
independent sets 𝑋 and 𝑌.

• Such that every edge connects a vertex in 𝑋 to
one in 𝑌.

• None of the vertices belonging to the same set
join each other.

RECAP: A complete bipartite graph (or biclique)
is a special kind of bipartite graph where every
vertex of the first set is connected to every vertex
of the second set.

𝑋 𝑌

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Bipartite Graps and Cycles … Cont’d

• Bipartite graphs can be characterized in terms of odd cycles as
follows.

• A graph 𝐺 is bipartite if and only if 𝐺 does not contain any odd cycle.

• Visual demonstration.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Circuit

In graph theory, a circuit is defined as a closed walk in which:

• Vertices may repeat.
• But edges are not allowed to repeat.

OR

• In graph theory, a closed trail is called as a circuit.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Circuit (Example)

• There are no edges repeated in the walk ℎ𝑏𝑐𝑑𝑒𝑓𝑐𝑔ℎ, hence the walk is
certainly a trail and, since it is closed, it is a circuit.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

To recap…

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Exercises

• Consider the graph in the figure.

• For those sequences of vertices
that are walks, decide whether
they are a path, a trail, a cycle or a
circuit.

• a , b , g , f , c , b
• b , g , f , c , b , g , a
• c , e , f , c
• c , e , f , c , e
• a , b , f , a
• f , d , e , c , b
• b, g, f, c, e, d, c, b

Trail
Walk
Cycle
Walk
Not a walk
Path
Circuit

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Exercises … Cont’d

• Consider the following sequences
of vertices:
a. x, v, y, w, v
b. x, u, x, u, x
c. x, u, v, y, x
d. x, v, y, w, v, u, x

• Which are directed walks?
• What are the lengths of directed

walks?
• Which directed walks are also

directed paths?
• Which directed walks are also

directed cycles?

a. and b.

4

none

none

Algorithms
Dijkstra’s and Floyd-Warshall
algorithms, Random Walks

4

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Finding Paths

• Several algorithms exist to find shortest and longest paths in graphs,
with the important distinction that the former problem is
computationally much easier than the latter.

• The longest path problem is the problem of finding a path of
maximum length between two vertices in a given graph.

• The shortest path problem is the problem of finding a path of
minimum length between two vertices in a given graph.

• The length of a path may either be measured by its number of
edges, or (in weighted graphs) by the sum of the weights of its edges.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Longest and Shortest Paths (Complexity)

• The longest path problem is NP-hard and the decision version of the
problem, which asks whether a path exists of at least some given
length, is NP-complete.
• However, it has a linear time solution for Directed Acyclic Graphs, which has

important applications in finding the critical path in scheduling problems.

• The shortest path problem can be solved in polynomial time in
graphs without negative-weight cycles.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Shortest Path Problems

• The Single-Source Shortest Path (SSSP) problem consists of finding
the shortest paths between a given vertex 𝑣 and all other vertices in
the graph.
• Algorithms such as Breadth-First-Search (BFS) for unweighted graphs or

Dijkstra’s solve this problem.

• The All-Pairs Shortest Path (APSP) problem consists of finding the
shortest path between all pairs of vertices in the graph.
• To solve this second problem, one can use the Floyd-Warshall algorithm or

apply the Dijkstra’s algorithm to each vertex in the graph.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

The Dijkstra’s Algorithm

• The Dijkstra’s algorithm works only for connected (directed or
undirected) graphs.

• Dijkstra algorithm works only for those graphs that do not contain
any negative weight edge.

• The actual Dijkstra’s algorithm does not output the shortest paths.
• It only provides the value or cost of the shortest paths.
• By making minor modifications in the actual algorithm, the shortest paths

can be easily obtained.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische mathematik, 1(1), 269-271.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Basics of Dijkstra's Algorithm

• Dijkstra's Algorithm starts with a source node, and it analyzes the graph
to find the shortest path between that node and all the other nodes in the
graph.

• The algorithm keeps track of the currently known shortest distance from
each node to the source node and it updates these values if it finds a
shorter path.

• Once the algorithm has found the shortest path between the source node
and another node, that node is marked as "visited" and added to the path.

• The process continues until all the nodes in the graph have been added to
the path. This way, we have a path that connects the source node to all
other nodes following the shortest path possible to reach each node.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Example

• Let us consider a graph with weighted edges.

• This graph can either be directed
or undirected.

• Here we will use an
undirected graph. A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Initialization

• Let 𝒔 the node at which we are starting be called the start vertex.

For each vertex of the given graph, two variables are defined as:

• 𝚷[𝒗] which denotes the predecessor of vertex 𝑣

• 𝒅[𝒗] which denotes the shortest distance of vertex 𝑣 from the source
vertex.

Furthermore:

• Create a set 𝑸 of all the unvisited nodes called the unvisited set.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Initialization

Dijkstra's algorithm will assign some initial values and will try to
improve them step by step.

Initially, the value of the considered variables is set as:

• The value of variable ‘Π’ for each vertex is set to NIL i.e., 𝚷[𝒗] = NIL
• The value of variable ‘𝑑’ for source vertex is set to 0 i.e., 𝒅[𝒔] = 𝟎
• The value of variable ‘𝑑’ for remaining vertices is set to ∞ i.e., 𝒅[𝒗] = ∞

Furthermore:

• Mark all nodes as unvisited, i.e., 𝑸 = 𝑽.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Start)

• 𝑄 = 𝑉 = 𝐴,𝐵, 𝐶, 𝐷, 𝐸
• 𝑑 𝐴 = 0, 𝑑 𝐵 = 𝑑 𝐶 = 𝑑 𝐷 = 𝑑 𝐸 = ∞
• Π 𝐴 = Π 𝐵 = Π 𝐶 = Π 𝐷 = Π[𝐸] = NIL

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start
vertex.

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

A B

D E

C

6

1

1

2
2

5

5

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start
vertex.
• The first time, it is the start vertex itself.

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

A B

D E

C

6

1

1

2
2

5

5

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• Its unvisited neighbors are B and D.

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from
the start vertex.
• I.e., 𝑑[𝐴] + 𝑑𝑖𝑠𝑡(𝐴, 𝐵), 𝑑[𝐴] + 𝑑𝑖𝑠𝑡(𝐴, 𝐷)

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from
the start vertex.
• I.e., 𝑑[𝐴] + 𝑑𝑖𝑠𝑡(𝐴, 𝐵), 𝑑[𝐴] + 𝑑𝑖𝑠𝑡(𝐴, 𝐷)

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

0 + 6 = 6

0 + 1 = 1

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐴 + 𝑑𝑖𝑠𝑡 𝐴, 𝐵 < 𝑑 𝐵 → 𝑑 𝐵 = 𝑑 𝐴 + 𝑑𝑖𝑠𝑡 𝐴, 𝐵

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

A B

D E

C

6

1

1

2
2

5

5

0 + 6 = 6

0 + 1 = 1

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐴 + 𝑑𝑖𝑠𝑡 𝐴, 𝐵 < 𝑑 𝐵 → 𝑑 𝐵 = 𝑑 𝐴 + 𝑑𝑖𝑠𝑡 𝐴, 𝐵

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 𝟔 A

C ∞ NIL

D 𝟏 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

6 < ∞

1 < ∞

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• When we are done considering all the unvisited neighbors of the
current node, mark the current node as visited and remove it from
the unvisited set. A visited node will never be checked again.

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 6 A

C ∞ NIL

D 1 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start
vertex.
• This time, the vertex is D.

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 6 A

C ∞ NIL

D 1 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• Its unvisited neighbors are B and E.

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 6 A

C ∞ NIL

D 1 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from
the start vertex.
• I.e., 𝑑[𝐷] + 𝑑𝑖𝑠𝑡(𝐷, 𝐵), 𝑑[𝐷] + 𝑑𝑖𝑠𝑡(𝐷, 𝐸)

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 6 A

C ∞ NIL

D 1 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

1 + 2 = 3

1 + 1 = 2

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐷 + 𝑑𝑖𝑠𝑡 𝐷, 𝐵 < 𝑑 𝐵 → 𝑑 𝐵 = 𝑑 𝐷 + 𝑑𝑖𝑠𝑡 𝐷, 𝐵

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 𝟑 D

C ∞ NIL

D 1 A

E 𝟐 D

A B

D E

C

6

1

1

2
2

5

5

3 < 6

2 < ∞

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• When we are done considering all the unvisited neighbors of the
current node, mark the current node as visited and remove it from
the unvisited set. A visited node will never be checked again.

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C ∞ NIL

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start
vertex.
• This time, the vertex is E.

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C ∞ NIL

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• Its unvisited neighbors are B and C.

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C ∞ NIL

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from
the start vertex.
• I.e., 𝑑[𝐸] + 𝑑𝑖𝑠𝑡(𝐸, 𝐵), 𝑑[𝐸] + 𝑑𝑖𝑠𝑡(𝐸, 𝐶)

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C ∞ NIL

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

2 + 2 = 4

2 + 5 = 7

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐸 + 𝑑𝑖𝑠𝑡 𝐸, 𝐵 < 𝑑 𝐵 → 𝑑 𝐵 = 𝑑 𝐸 + 𝑑𝑖𝑠𝑡 𝐸, 𝐵

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 𝟕 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

4 > 3

7 < ∞

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• When we are done considering all the unvisited neighbors of the
current node, mark the current node as visited and remove it from
the unvisited set. A visited node will never be checked again.

• 𝑄 = {𝐵, 𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• Its only unvisited neighbor is C.

• 𝑄 = {𝐵, 𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from
the start vertex.
• I.e., 𝑑[𝐵] + 𝑑𝑖𝑠𝑡(𝐵, 𝐶)

• 𝑄 = {𝐵, 𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

3 + 5 = 8

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐵 + 𝑑𝑖𝑠𝑡 𝐵, 𝐶 < 𝑑 𝐶 → 𝑑 𝐶 = 𝑑 𝐵 + 𝑑𝑖𝑠𝑡 𝐵, 𝐶

• 𝑄 = {𝐵, 𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

8 > 7

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• When we are done considering all the unvisited neighbors of the
current node, mark the current node as visited and remove it from
the unvisited set. A visited node will never be checked again.

• 𝑄 = {𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start
vertex.
• This time, the vertex is C.

• 𝑄 = {𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• NO unvisited neighbors.

• 𝑄 = {𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• Remove the current vertex from the list of unvisited vertices.

• 𝑄 = {}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• We have the shortest distance from A to every other vertex

A B

D E

C

6

1

1

2
2

5

5

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Pseudocode
1 function Dijkstra(Graph, source):

2

3 create vertex set Q

4

5 for each vertex v in Graph:

6 dist[v] ← INFINITY

7 prev[v] ← NIL

8 add v to Q

9 dist[source] ← 0

10

11 while Q is not empty:

12 u ← vertex in Q with min dist[u]

13

14 remove u from Q

15

16 for each neighbor v of u: // only v that are still in Q

17 alt ← dist[u] + length(u, v)

18 if alt < dist[v]:

19 dist[v] ← alt

20 prev[v] ← u

21

22 return dist[], prev[]

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

The Floyd-Warshall Algorithm

• The Floyd-Warshall algorithm is an algorithm for finding the
shortest path between all the pairs of vertices in a weighted graph.

• This algorithm works for both the directed and undirected weighted
graphs.

• It works for graphs with positive or negative edge weights, but it does
not work for the graphs with negative cycles (where the sum of the
edges in a cycle is negative).

Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6), 345.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Floyd-Warshall Algorithm – Step 1

• Create an adjacency matrix 𝐴0 of dimension 𝑛 ∗ 𝑛 where 𝑛 is the
number of vertices. The row and the column are indexed as 𝑖 and 𝑗
respectively.

• Each cell 𝐴0[𝑖][𝑗] is filled with the weight on the edge from the 𝑖th
vertex to the adjecent 𝑗th vertex.

• If the 𝑖th vertex and the 𝑗th vertex are not adjacent, the value of the
cell is left as infinity.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Floyd-Warshall Algorithm – Step 1
(Example)

𝐴0 =

1 2

4 3

8

3

2
52

7

1

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 ∞

3 5 ∞ 0 1

4 2 ∞ ∞ 0

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Floyd-Warshall Algorithm – Step 2

• Now, create a matrix 𝑨𝟏 using matrix 𝐴0.

• The elements in the first column and the first row are left as they are.

• The remaining cells are filled in the following way:
• In this step, 𝑘 is vertex 1. We calculate the distance from source vertex to

destination vertex through this vertex 𝑘.
• 𝐴1[𝑖][𝑗] is filled with (𝐴0[𝑖][𝑘] + 𝐴0[𝑘][𝑗]) if (𝐴0[𝑖][𝑗] > 𝐴0[𝑖][𝑘] + 𝐴0[𝑘][𝑗]).

• That is, if the direct distance from the source to the destination is
greater than the path through the vertex 𝑘, then the cell is filled with
𝐴[𝑖][𝑘] + 𝐴[𝑘][𝑗].

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 ∞

3 5 ∞ 0 1

4 2 ∞ ∞ 0

Floyd-Warshall Algorithm – Step 2
(Example)
• 𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])

• 𝑨𝟏 𝟐 𝟑 = min(𝑨𝟎 𝟐 𝟑 ,𝑨𝟎[𝟐][𝟏] + 𝑨𝟎[𝟏][𝟑])

1 2

4 3

8

3

2
52

7

1

𝐴0 = 𝐴1 =

1 2 3 4

1 0 3 ∞ 7

2 8 0

3 5 0

4 2 0

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 15

3 5 8 0 1

4 2 5 ∞ 0

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 ∞

3 5 ∞ 0 1

4 2 ∞ ∞ 0

Floyd-Warshall Algorithm – Step 2
(Example)
• 𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])

• 𝑨𝟏 𝟐 𝟒 = min(𝑨𝟎 𝟐 𝟒 ,𝑨𝟎[𝟐][𝟏] + 𝑨𝟎[𝟏][𝟒])

1 2

4 3

8

3

2
52

7

1

𝐴0 = 𝐴1 =

1 2 3 4

1 0 3 ∞ 7

2 8 0

3 5 0

4 2 0

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 15

3 5 8 0 1

4 2 8 ∞ 0

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Floyd-Warshall Algorithm – Further Steps

• The algorithm is applied until 𝑘 = 𝑛 (number of vertices)

• Pseudocode:

n = no of vertices

A = matrix of dimension n*n

for k = 1 to n

for i = 1 to n

for j = 1 to n

Ak[i,j] = min(Ak-1[i,j], Ak-1[i,k] + Ak-1[k, j])

return A

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Floyd-Warshall Algorithm – Further Steps
(Examples)

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 15

3 5 8 0 1

4 2 5 ∞ 0

𝐴1 = 𝐴2 =

1 2 3 4

1 0 3

2 8 0 2 15

3 8 0

4 5 0

1 2 3 4

1 0 3 5 7

2 8 0 2 15

3 5 8 0 1

4 2 5 7 0

𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Floyd-Warshall Algorithm – Further Steps
(Examples)

1 2 3 4

1 0 3 5 7

2 8 0 2 15

3 5 8 0 1

4 2 5 7 0

𝐴2 = 𝐴3 =

1 2 3 4

1 0 5

2 0 2

3 5 8 0 1

4 7 0

1 2 3 4

1 0 3 5 6

2 7 0 2 3

3 5 8 0 1

4 2 5 7 0

𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Floyd-Warshall Algorithm – Further Steps
(Examples)

1 2 3 4

1 0 3 5 6

2 7 0 2 3

3 5 8 0 1

4 2 5 7 0

𝐴3 = 𝐴4 =

1 2 3 4

1 0 6

2 0 3

3 0 1

4 2 5 7 0

1 2 3 4

1 0 3 5 6

2 5 0 2 3

3 3 6 0 1

4 2 5 7 0

𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s VS Floyd–Warshall

• Dijkstra’s algorithm is one example of a single-source shortest or
SSSP algorithm, i.e., given a source vertex it finds shortest path from
source to all other vertices.

• Floyd Warshall algorithm is an example of all-pairs shortest path
algorithm, meaning it computes the shortest path between all pair of
nodes.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s VS Floyd–Warshall … Cont’d

• Time Complexity of Dijkstra’s Algorithm: 𝑂(𝐸 log 𝑉)

• Time Complexity of Floyd-Warshall: 𝑂(𝑉3)

• We can use Dijskstra’s shortest path algorithm for finding all pair
shortest paths by running it for every vertex. But time complexity of
this would be 𝑂(𝑉𝐸 log 𝑉) which can go (𝑉3 log 𝑉) in worst case.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Random Walk - Origins

• The concept of random walk was firstly introduced by Pearson in
1905 [1].

• Spitzer [2] gives a complete review of random walks for mathematical
researchers and clearly presents the mathematical principles of
random walks.

[1] Pearson, K. (1905). The problem of the random walk. Nature, 72(1867), 342-342.
[2] Spitzer, F. (2013). Principles of random walk (Vol. 34). Springer Science & Business Media.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Classical Random Walks

• A random walk is known as a random process.

• It describes a walk consisting of a succession of random steps on
some mathematical space, which can be denoted as

{𝜉𝑡 , 𝑡 = 0, 1, 2, … }

• 𝜉𝑡 is a random variable describing the position of a random walk after
𝑡 steps.

• The sequence can also be regarded as a special category of Markov
chain.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Random Walk Agorithms

• A random walk algorithm provides random walks in a graph.

• A random walk start at one node, choose a neighbor to navigate to at
random or based on a provided probability distribution, and then do
the same from that node, keeping the resulting walk in a list.
• It’s similar to how a drunk person traverses a city.

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Random Walk Agorithms … Cont’d

• From the perspective of graph representation, let 𝐺 = (𝑉, 𝐸) be a
connected graph, where 𝑉 is the vertex set and 𝐸 is the edge set.

• The adjacency matrix of 𝐺 is denoted as 𝐴 ∈ R𝑛×𝑛, where 𝑛 is the
number of nodes in 𝐺.

• 𝐴𝑖𝑗 denotes the weight of edge from the node 𝑖 to the node 𝑗.

• The transition probability (single step) from node 𝑖 to node 𝑗 on the
graph can be defined as:

𝑝𝑖𝑗 =
𝐴𝑖𝑗

σ𝑗∈V𝐴𝑖𝑗

Connectivity
(next lesson)
Eulerian and Hamiltonian

Graphs, The Travelling
Salesperson Problem

5

Possible
Assignements

6

Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Some Possible Assignements

• Discuss the linear time solution for longest path detection in
Directed Acyclic Graphs.

• Discuss the PageRank algorithm (which is based on Random Walks).

• Discuss a specific solution to the Travelling Salesperson Problem
(Next Lesson).

• You can either present and discuss one of the above-mentioned
problems, and/or present an implementation of the algorithm.

