

TABLE OF CONTENTS

1 A QUICK RECAP
ـ. Recap of basic notions

2 SOME TRIVIAL DEFINITIONS

- Null, Empty, and Complete Graphs

3 WALKING ON A GRAPH
. Walks, Paths, Trails, Cycles, and Circuits
4. ALGORITHMS

Dijkstra's and FloydWarshall algorithms, Random Walks

5 CONNECTIVITY
. Eulerian and Hamiltonian Graphs, The Travelling Salesperson Problem
6. POSSIBLE ASSIGNEMENTS

A Quick Recap

Recap of Basic Notions

A Quick Recap

- A graph is a pair $G=(V, E)$ of sets such that $E \subseteq[V]^{2}$; thus, the elements of E are 2-element subsets of V.

$$
\begin{gathered}
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
E=\left\{\left\{v_{i}, v_{k}\right\}\right\} \quad i, k \in[1, \ldots, n]
\end{gathered}
$$

- The elements of V are the vertices (or nodes, or points) of the graph G, the elements of E are its edges (or lines, or arcs).
- The usual way to represent a graph is by drawing a dot for each vertex and joining two of these dots by a line if the corresponding two vertices form an edge.

A Quick Recap ... Cont'd

- The graph G on:

$$
V=\{1, \ldots, 7\} \text { with edge set } E=\{\{1,2\},\{1,5\},\{2,5\},\{3,4\},\{5,7\}\}
$$

A Quick Recap ... Cont'd

- Two vertices x, y of G are adjacent (or neighbors), if $e=\{x, y\}$ is an edge adjacent of G.
- Two edges $e \neq f$ are adjacent if they have an end in common.

A Quick Recap ... Cont'd

- Order of a graph: its number of vertices $|V|$.
- Size of a graph: its number of edges $|E|$.

$$
\begin{aligned}
G=(V, E) \rightarrow V=\{1, \ldots, 7\}, & E=\{\{1,2\},\{1,5\},\{2,5\},\{3,4\},\{5,7\}\} \\
|V| & =7 \\
|E| & =5
\end{aligned}
$$

Some Trivial Definitions

Null and Complete Graphs

Null Graph

- In the mathematical field of graph theory, the term null graph may refer either to the order-zero graph, or alternatively, to any edgeless graph.
- The latter is sometimes called an empty graph.

Null Graph (Order-zero Graph)

- The order-zero graph, denoted as K_{0}, is the unique graph having no vertices (hence its order is zero).
- It follows that K_{0} also has no edges.
- For the order-zero graph $K_{0}=G=(\varnothing, \varnothing)$ we simply write $G=\emptyset$.
- A graph of order 0 (or 1) is called trivial.

Null Graph (Empty Graph)

- For each natural number n, the edgeless graph (or empty graph) $\overline{K_{n}}$ of order n is the graph with n vertices and zero edges.
- $\overline{K_{n}}=G=(V, \emptyset)$.

Null Graph (Representations)

- Figure (a) illustrates the null (oreder-zero) graph K_{0}, while (b) the null graph (empty graph) $\overline{K_{6}}$ with six vertices.
(a)
(b)

Complete Graph

- A graph in which each pair of distinct vertices are adjacent is called a complete graph.
- A complete graph with n vertices is denoted by K_{n}.
- K_{n} contains $\frac{n(n-1)}{2}$ edges.

Complete Graphs ... Cont'd

- Figure (b) illustrates a complete graph K_{6} with six vertices.

Walking on a Graph

Walks, Paths, Trails, Cycles, and Circuits

Walk

- A walk (of length k) in a graph G is a non-empty alternating sequence

$$
v_{0} e_{0} v_{1} e_{1} \ldots e_{k-1} v_{k}
$$

of vertices and edges in G such that $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for all $i<k$.

- The length of a walk is k.

Walk (Example)

- We often refer to a walk by the natural sequence of its vertices.
- The walk is denoted as $a b c d b$.

Open / Closed Walk

- If the starting vertex is the same as the ending vertex, that is $v_{0}=v_{k}$, the walk is closed.
- A walk is considered open otherwise.
- cegfc is a closed walk.
- If length of the walk $=0$, then it is called as a trivial walk.
- Both vertices and edges can repeat in a walk whether it is an open or a closed walk.

Path

- A path is a non-empty graph $P=(V, E)$ of the form:

$$
\begin{gathered}
V=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\} \\
E=\left\{\left\{x_{0}, x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{k-1}, x_{k}\right\}\right\}
\end{gathered}
$$

where the x_{i} are all distinct.

- The vertices x_{0} and x_{k} are called the end-vertices or ends of P.
- The vertices x_{1}, \ldots, x_{k-1} are the inner vertices of P.

Path (Example)

- A path $P=P^{6}$ in G

- $P(V, E) \rightarrow V=\{b, c, d, e, f, g, h\}, E=\{\{b, c\},\{c, d\},\{d, e\},\{e, f\},\{f, g\},\{g, h\}\}$

Graph Theory and Algorithms Ph.D. Course - Marco Viviani

Path (A Simpler Definition)

In graph theory, a path is defined as an open walk in which:

- Neither vertices are allowed to repeat.
- Nor edges are allowed to repeat.

Path ... Cont'd

- The number of edges of a path is its length.
- The path of length k is denoted by P^{k}.
- We often refer to a path by the natural sequence of its vertices, writing, say, $P=x_{0} x_{1} \ldots x_{k}$, and calling P a path from x_{0} to x_{k} (as well as between x_{0} and x_{k}).
- More precisely, by one of the two natural sequences: $x_{0} x_{1} \ldots x_{k}$ and $x_{k} x_{k-1} \ldots x_{0}$, we denote the same path.

Path (Example)

- A path abcde (a) and ... what about abcdec (b)?

Trail

In graph theory, a trail is defined as an open walk in which:

- Vertices may repeat.
- Edges are not allowed to repeat.
- abcdec is a trail.

Weight of a Walk (a Path, a Trail)

- RECAP: a weighted graph associates a value (weight) with every edge in the graph.
- The weight of a walk (or trail or path) in a weighted graph is the sum of the weights of the traversed edges.
- Sometimes the words cost, or length, are used instead of weight.

Directed Walk, Path, Trail

- A directed walk is a sequence of edges directed in the same direction which joins a sequence of vertices.
- A directed path is a directed walk in which all vertices are distinct.
- A directed trail is a directed walk in which all edges are distinct.
- A weighted directed graph associates a value (weight) with every edge in the directed graph.
- The weight of a directed walk (or trail or path) in a weighted directed graph is the sum of the weights of the traversed edges.

Cycle

A possible formal definition

- If $P=x_{0} \ldots x_{k-1}$ is a path and $k \geq 3$, then the graph $C=P+x_{k-1} x_{0}$ is called a cycle.

More simply... In graph theory, a cycle is defined as a closed walk in which:

- Neither vertices (except possibly the starting and ending vertices) are allowed to repeat.
- Nor edges are allowed to repeat.

Cycle ... Cont'd

- As with paths, we often denote a cycle by its (cyclic) sequence of vertices.
- A cycle C might be written as $x_{0} \ldots x_{k-1} x_{0}$.
- The length of a cycle is its number of edges (or vertices).
- The cycle of length k is called a k-cycle and denoted by C^{k}.

Cycle ... Cont'd

- The minimum length of a cycle (contained) in a graph G is the girth (calibro) $g(G)$ of G.
- The maximum length of a cycle in G is its circumference $c(G)$.
- If G does not contain a cycle, we set the former to ∞, the latter to zero.
- $g(G)=\infty$
- $c(G)=0$

Cycle (Example)

- The closed walk bcgf is a cycle.

Cycle ... Cont'd

- A cycle is odd if its length is odd.
- A cycle is even if its length is even.

Bipartite Graps and Cycles

RECAP: In graph theory, a bipartite graph is a graph where:

- Vertices can be divided into two disjoint and independent sets X and Y.
- Such that every edge connects a vertex in X to one in Y.
- None of the vertices belonging to the same set join each other.

RECAP: A complete bipartite graph (or biclique) is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set.

Bipartite Graps and Cycles ... Cont'd

- Bipartite graphs can be characterized in terms of odd cycles as follows.
- A graph G is bipartite if and only if G does not contain any odd cycle.
- Visual demonstration.

Circuit

In graph theory, a circuit is defined as a closed walk in which:

- Vertices may repeat.
- But edges are not allowed to repeat.

OR

- In graph theory, a closed trail is called as a circuit.

Circuit (Example)

- There are no edges repeated in the walk hbcdefcgh, hence the walk is certainly a trail and, since it is closed, it is a circuit.

To recap...

Exercises

- Consider the graph in the figure.
- For those sequences of vertices that are walks, decide whether they are a path, a trail, a cycle or a circuit.
- a,b,g,f,c,b Trail
- b, g,f,c,b,g,a Walk
- c,e,f,c Cycle
- c,e,f,c,e Walk
- a, b, f, a
- f,d,e, c, b

Not a walk

- b, g, f, c, e, d, c, b

Path
Circuit

Exercises ... Cont'd

- Consider the following sequences of vertices:
a. $\mathrm{x}, \mathrm{v}, \mathrm{y}, \mathrm{w}, \mathrm{v}$
b. $\quad \mathrm{X}, \mathrm{u}, \mathrm{x}, \mathrm{u}, \mathrm{X}$
c. $\quad x, u, v, y, x$
d. $\mathrm{x}, \mathrm{v}, \mathrm{y}, \mathrm{w}, \mathrm{v}, \mathrm{u}, \mathrm{x}$
- Which are directed walks? a. and b.
- What are the lengths of directed walks? 4
- Which directed walks are also directed paths? none
- Which directed walks are also
 directed cycles? none

Algorithms

Dijkstra's and Floyd-Warshall algorithms, Random Walks

Finding Paths

- Several algorithms exist to find shortest and longest paths in graphs, with the important distinction that the former problem is computationally much easier than the latter.
- The longest path problem is the problem of finding a path of maximum length between two vertices in a given graph.
- The shortest path problem is the problem of finding a path of minimum length between two vertices in a given graph.
- The length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.

Longest and Shortest Paths (Complexity)

- The longest path problem is NP-hard and the decision version of the problem, which asks whether a path exists of at least some given length, is NP-complete.
- However, it has a linear time solution for Directed Acyclic Graphs, which has important applications in finding the critical path in scheduling problems.
- The shortest path problem can be solved in polynomial time in graphs without negative-weight cycles.

Shortest Path Problems

- The Single-Source Shortest Path (SSSP) problem consists of finding the shortest paths between a given vertex v and all other vertices in the graph.
- Algorithms such as Breadth-First-Search (BFS) for unweighted graphs or Dijkstra's solve this problem.
- The All-Pairs Shortest Path (APSP) problem consists of finding the shortest path between all pairs of vertices in the graph.
- To solve this second problem, one can use the Floyd-Warshall algorithm or apply the Dijkstra's algorithm to each vertex in the graph.

The Dijkstra's Algorithm

- The Dijkstra's algorithm works only for connected (directed or undirected) graphs.
- Dijkstra algorithm works only for those graphs that do not contain any negative weight edge.
- The actual Dijkstra's algorithm does not output the shortest paths.
- It only provides the value or cost of the shortest paths.
- By making minor modifications in the actual algorithm, the shortest paths can be easily obtained.

Basics of Dijkstra's Algorithm

- Dijkstra's Algorithm starts with a source node, and it analyzes the graph to find the shortest path between that node and all the other nodes in the graph.
- The algorithm keeps track of the currently known shortest distance from each node to the source node and it updates these values if it finds a shorter path.
- Once the algorithm has found the shortest path between the source node and another node, that node is marked as "visited" and added to the path.
- The process continues until all the nodes in the graph have been added to the path. This way, we have a path that connects the source node to all other nodes following the shortest path possible to reach each node.

Dijkstra's Algorithm - Example

- Let us consider a graph with weighted edges.
- This graph can either be directed or undirected.
- Here we will use an undirected graph.

Dijkstra's Algorithm - Initialization

- Let s the node at which we are starting be called the start vertex.

For each vertex of the given graph, two variables are defined as:

- $\Pi[v]$ which denotes the predecessor of vertex v
- d[v] which denotes the shortest distance of vertex v from the source vertex.

Furthermore:

- Create a set \boldsymbol{Q} of all the unvisited nodes called the unvisited set.

Dijkstra's Algorithm - Initialization

Dijkstra's algorithm will assign some initial values and will try to improve them step by step.

Initially, the value of the considered variables is set as:

- The value of variable ' Π ' for each vertex is set to NIL i.e., $\Pi[v]=$ NIL
- The value of variable ' d ' for source vertex is set to 0 i.e., $\boldsymbol{d}[\boldsymbol{s}]=\mathbf{0}$
- The value of variable ' d ' for remaining vertices is set to ∞ i.e., $d[v]=\infty$

Furthermore:

- Mark all nodes as unvisited, i.e., $\boldsymbol{Q}=\boldsymbol{V}$.

Dijkstra's Algorithm - Running Example (Start)

- $Q=V=\{A, B, C, D, E\}$
- $d[A]=0, d[B]=d[C]=d[D]=d[E]=\infty$
- $\Pi[A]=\Pi[B]=\Pi[C]=\Pi[D]=\Pi[E]=\mathrm{NIL}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	∞	NIL
C	∞	NIL
D	∞	NIL
E	∞	NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- Visit the unvisited vertex with the smallest distance from the start vertex.

- $Q=\{A, B, C, D, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	∞	NIL
C	∞	NIL
D	∞	NIL
E		NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- Visit the unvisited vertex with the smallest distance from the start vertex.
- The first time, it is the start vertex itself.

- $Q=\{A, B, C, D, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	∞	NIL
C	∞	NIL
D	∞	NIL
E		NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, examine its unvisited neighbors.

- $Q=\{A, B, C, D, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	∞	NIL
C	∞	NIL
D	∞	NIL
E		NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, examine its unvisited neighbors.
- Its unvisited neighbors are B and D.

- $Q=\{A, B, C, D, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	∞	NIL
C	∞	NIL
D	∞	NIL
E		NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, calculate the distance of each neighbor from the start vertex.
- l.e., $d[A]+\operatorname{dist}(A, B), d[A]+\operatorname{dist}(A, D)$

- $Q=\{A, B, C, D, E\}$

Vertex	Shortest		
distance from A		\quad	Previous vertex
:---:			
A			
B			
C			
D			

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, calculate the distance of each neighbor from the start vertex.
- l.e., $d[A]+\operatorname{dist}(A, B), d[A]+\operatorname{dist}(A, D)$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	∞	NIL
C	∞	NIL
D	∞	NIL
E	∞	NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- If the calculated distance is less then the know distance for the neighbors, update the shortest distance.
- E.g, if $d[A]+\operatorname{dist}(A, B)<d[B] \rightarrow d[B]=d[A]+\operatorname{dist}(A, B)$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	∞	NIL
C	∞	NIL
D	∞	NIL
E	∞	NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- If the calculated distance is less then the know distance for the neighbors, update the shortest distance.
- E.g, if $d[A]+\operatorname{dist}(A, B)<d[B] \rightarrow d[B]=d[A]+\operatorname{dist}(A, B)$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	$\mathbf{6}$	A
C	∞	NIL
D	$\mathbf{1}$	A
E	∞	NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- When we are done considering all the unvisited neighbors of the current node, mark the current node as visited and remove it from the unvisited set. A visited node will never be checked again.

- $Q=\{B, C, D, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	6	A
C	∞	NIL
D	∞	A
E		NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- Visit the unvisited vertex with the smallest distance from the start vertex.
- This time, the vertex is D.

- $Q=\{B, C, D, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	6	A
C	∞	NIL
D	1	A
E	∞	NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, examine its unvisited neighbors.
- Its unvisited neighbors are B and E.

- $Q=\{B, C, D, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	6	A
C	∞	NIL
D	∞	A
E		NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, calculate the distance of each neighbor from the start vertex.
- I.e., $d[D]+\operatorname{dist}(D, B), d[D]+\operatorname{dist}(D, E)$

- $Q=\{B, C, D, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	6	A
C	∞	NIL
D	1	A
E	∞	NIL

Dijkstra's Algorithm - Running Example (Cont'd)

- If the calculated distance is less then the know distance for the neighbors, update the shortest distance.
- E.g, if $d[D]+\operatorname{dist}(D, B)<d[B] \rightarrow d[B]=d[D]+\operatorname{dist}(D, B)$

- $Q=\{B, C, D, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	∞	NIL
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- When we are done considering all the unvisited neighbors of the current node, mark the current node as visited and remove it from the unvisited set. A visited node will never be checked again.

- $Q=\{B, C, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	∞	NIL
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- Visit the unvisited vertex with the smallest distance from the start vertex.
- This time, the vertex is E.

- $Q=\{B, C, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	∞	NIL
D	1	A
E	2	

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, examine its unvisited neighbors.
- Its unvisited neighbors are B and C.

- $Q=\{B, C, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	∞	NIL
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, calculate the distance of each neighbor from the start vertex.
- l.e., $d[E]+\operatorname{dist}(E, B), d[E]+\operatorname{dist}(E, C)$

- $Q=\{B, C, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	∞	NIL
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- If the calculated distance is less then the know distance for the neighbors, update the shortest distance.
- E.g, if $d[E]+\operatorname{dist}(E, B)<d[B] \rightarrow d[B]=d[E]+\operatorname{dist}(E, B)$

- $Q=\{B, C, E\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- When we are done considering all the unvisited neighbors of the current node, mark the current node as visited and remove it from the unvisited set. A visited node will never be checked again.

- $Q=\{B, C\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, examine its unvisited neighbors.
- Its only unvisited neighbor is C.

- $Q=\{B, C\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, calculate the distance of each neighbor from the start vertex.
- l.e., $d[B]+\operatorname{dist}(B, C)$

- $Q=\{B, C\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- If the calculated distance is less then the know distance for the neighbors, update the shortest distance.
- E.g, if $d[B]+\operatorname{dist}(B, C)<d[C] \rightarrow d[C]=d[B]+\operatorname{dist}(B, C)$

- $Q=\{B, C\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- When we are done considering all the unvisited neighbors of the current node, mark the current node as visited and remove it from the unvisited set. A visited node will never be checked again.

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

- $Q=\{C\}$

Dijkstra's Algorithm - Running Example (Cont'd)

- Visit the unvisited vertex with the smallest distance from the start vertex.
- This time, the vertex is C.

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

- $Q=\{C\}$

Dijkstra's Algorithm - Running Example (Cont'd)

- For the current vertex, examine its unvisited neighbors.
- NO unvisited neighbors.

- $Q=\{C\}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- Remove the current vertex from the list of unvisited vertices.

- $Q=\{ \}$

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

Dijkstra's Algorithm - Running Example (Cont'd)

- We have the shortest distance from A to every other vertex

Vertex	Shortest distance from A	Previous vertex
A	0	NIL
B	3	D
C	7	E
D	1	A
E	2	D

Dijkstra's Algorithm - Pseudocode

```
function Dijkstra(Graph, source):
create vertex set Q
for each vertex v in Graph:
        dist[v] \leftarrow INFINITY
        prev[v] \leftarrow NIL
        add v to Q
dist[source] \leftarrow0
while Q is not empty:
    u v vertex in Q with min dist[u]
        remove u from Q
        for each neighbor v of u: // only v that are still in Q
            alt \leftarrow dist[u] + length(u, v)
            if alt < dist[v]:
            dist[v] \leftarrow alt
            prev[v] }\leftarrow
return dist[], prev[]
```


The Floyd-Warshall Algorithm

- The Floyd-Warshall algorithm is an algorithm for finding the shortest path between all the pairs of vertices in a weighted graph.
- This algorithm works for both the directed and undirected weighted graphs.
- It works for graphs with positive or negative edge weights, but it does not work for the graphs with negative cycles (where the sum of the edges in a cycle is negative).

Floyd-Warshall Algorithm - Step 1

- Create an adjacency matrix A^{0} of dimension $n * n$ where n is the number of vertices. The row and the column are indexed as i and j respectively.
- Each cell $A^{0}[i][j]$ is filled with the weight on the edge from the i th vertex to the adjecent j th vertex.
- If the i th vertex and the j th vertex are not adjacent, the value of the cell is left as infinity.

Floyd-Warshall Algorithm - Step 1 (Example)

$A^{0}=$| 1 |
| :--- |
| 2 |
| 3 |\(\left[\begin{array}{cccc}0 \& 3 \& \infty \& 7

8 \& 0 \& 2 \& \infty

5 \& \infty \& 0 \& 1

2 \& \infty \& \infty \& 0\end{array}\right]\)

Floyd-Warshall Algorithm - Step 2

- Now, create a matrix \boldsymbol{A}^{1} using matrix A^{0}.
- The elements in the first column and the first row are left as they are.
- The remaining cells are filled in the following way:
- In this step, k is vertex 1 . We calculate the distance from source vertex to destination vertex through this vertex k.
- $A^{1}[i][j]$ is filled with $\left(A^{0}[i][k]+A^{0}[k][j]\right)$ if $\left(A^{0}[i][j]>A^{0}[i][k]+A^{0}[k][j]\right)$.
- That is, if the direct distance from the source to the destination is greater than the path through the vertex k, then the cell is filled with $A[i][k]+A[k][j]$.

Floyd-Warshall Algorithm - Step 2 (Example)

- $A^{k}[i, j]=\min \left(A^{k-1}[i, j], A^{k-1}[i, k]+A^{k-1}[k, j]\right)$
- $A^{1}[2][3]=\min \left(A^{0}[2][3], A^{0}[2][1]+A^{0}[1][3]\right)$

$$
\left.\left.A^{0}=\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array} \begin{array}{ccccc}
0 & 3 & \infty & 7 \\
4 & 0 & 2 & \infty \\
5 & \infty & 0 & 1 \\
2 & \infty & \infty & 0
\end{array}\right] \quad A^{1}=\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}\left[\begin{array}{llll}
0 & 3 & \infty & 7 \\
8 & 0 & & \\
5 & & 0 & \\
2 & & & 0
\end{array}\right] \quad \begin{array}{l}
1 \\
2
\end{array} \begin{array}{cccc}
0 & 3 & \infty & 7 \\
8 & 0 & 2 & 15 \\
3 & 8 & 0 & 1 \\
4 \\
2 & 5 & \infty & 0
\end{array}\right]
$$

Floyd-Warshall Algorithm - Step 2 (Example)

- $A^{k}[i, j]=\min \left(A^{k-1}[i, j], A^{k-1}[i, k]+A^{k-1}[k, j]\right)$
- $A^{1}[2][4]=\min \left(A^{0}[2][4], A^{0}[2][1]+A^{0}[1][4]\right)$

$$
\left.A^{0}=\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array} \begin{array}{ccccc}
0 & 3 & \infty & 7 \\
8 & 0 & 2 & \infty \\
5 & \infty & 0 & 1 \\
2 & \infty & \infty & 0
\end{array}\right] \quad A^{1}=\begin{gathered}
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{llll}
0 & 3 & \infty & 7 \\
8 & 0 & & \\
5 & & 0 & \\
2 & & & 0
\end{array}\right]
$$

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left[\begin{array}{cccc}
0 & 3 & \infty & 7 \\
8 & 0 & 2 & 15 \\
5 & 8 & 0 & 1 \\
2 & 8 & \infty & 0
\end{array}\right]
$$

Floyd-Warshall Algorithm - Further Steps

- The algorithm is applied until $k=n$ (number of vertices)
- Pseudocode:

```
n = no of vertices
A = matrix of dimension n*n
for k = 1 to n
    for i = 1 to n
        for j = 1 to n
        A 
return A
```


Floyd-Warshall Algorithm - Further Steps (Examples)

$$
A^{1}=\begin{gathered}
1 \\
2 \\
3
\end{gathered}\left[\begin{array}{cccc}
0 & 3 & \infty & 7 \\
8 & 0 & 2 & 15 \\
5 & 8 & 0 & 1 \\
2 & 5 & \infty & 0
\end{array}\right]
$$

$$
A^{2}=\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}\left[\begin{array}{llll}
0 & 3 & & \\
8 & 0 & 2 & 15 \\
& 8 & 0 & \\
5 & & 0
\end{array}\right]
$$

$\left.\begin{array}{c} \\ 1 \\ 2 \\ 2\end{array} \begin{array}{cccc}1 & 2 & 3 & 4 \\ 4 \\ 0 & 3 & 5 & 7 \\ 5 & 0 & 2 & 15 \\ 2 & 5 & 7 & 0\end{array}\right]$

$$
A^{k}[i, j]=\min \left(A^{k-1}[i, j], A^{k-1}[i, k]+A^{k-1}[k, j]\right)
$$

Floyd-Warshall Algorithm - Further Steps (Examples)

$$
A^{2}=\begin{gathered}
1 \\
2 \\
4
\end{gathered}\left[\begin{array}{cccc}
0 & 3 & 5 & 7 \\
8 & 0 & 2 & 15 \\
5 & 8 & 0 & 1 \\
2 & 5 & 7 & 0
\end{array}\right]
$$

$$
A^{3}=\begin{aligned}
& 1 \\
& 2 \\
& 4
\end{aligned}\left[\begin{array}{llll}
0 & & 5 & \\
& 0 & 2 & \\
5 & 8 & 0 & 1 \\
& & 7 & 0
\end{array}\right]
$$

$$
\longrightarrow \begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left[\begin{array}{llll}
0 & 3 & 5 & 6 \\
7 & 0 & 2 & 3 \\
5 & 8 & 0 & 1 \\
2 & 5 & 7 & 0
\end{array}\right]
$$

$$
A^{k}[i, j]=\min \left(A^{k-1}[i, j], A^{k-1}[i, k]+A^{k-1}[k, j]\right)
$$

Floyd-Warshall Algorithm - Further Steps (Examples)

$$
A^{3}=\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}\left[\begin{array}{llll}
0 & 3 & 5 & 6 \\
7 & 0 & 2 & 3 \\
5 & 8 & 0 & 1 \\
2 & 5 & 7 & 0
\end{array}\right]
$$

$$
A^{4}=\begin{aligned}
& 1 \\
& 2 \\
& 4
\end{aligned}\left[\begin{array}{llll}
0 & & & 6 \\
& 0 & & 3 \\
& & 0 & 1 \\
2 & 5 & 7 & 0
\end{array}\right]
$$

$$
\begin{gathered}
\\
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 3 & 5 & 6 \\
5 & 0 & 2 & 3 \\
3 & 6 & 0 & 1 \\
2 & 5 & 7 & 0
\end{array}\right]
$$

$$
A^{k}[i, j]=\min \left(A^{k-1}[i, j], A^{k-1}[i, k]+A^{k-1}[k, j]\right)
$$

Dijkstra's VS Floyd-Warshall

- Dijkstra's algorithm is one example of a single-source shortest or SSSP algorithm, i.e., given a source vertex it finds shortest path from source to all other vertices.
- Floyd Warshall algorithm is an example of all-pairs shortest path algorithm, meaning it computes the shortest path between all pair of nodes.

Dijkstra's VS Floyd-Warshall ... Cont'd

- Time Complexity of Dijkstra's Algorithm: $O(E \log V)$
- Time Complexity of Floyd-Warshall: $O\left(V^{3}\right)$
- We can use Dijskstra's shortest path algorithm for finding all pair shortest paths by running it for every vertex. But time complexity of this would be $O(V E \log V)$ which can go $\left(V^{3} \log V\right)$ in worst case.

Random Walk - Origins

- The concept of random walk was firstly introduced by Pearson in 1905 [1].
- Spitzer [2] gives a complete review of random walks for mathematical researchers and clearly presents the mathematical principles of random walks.

Classical Random Walks

- A random walk is known as a random process.
- It describes a walk consisting of a succession of random steps on some mathematical space, which can be denoted as

$$
\left\{\xi_{t}, t=0,1,2, \ldots\right\}
$$

- ξ_{t} is a random variable describing the position of a random walk after t steps.
- The sequence can also be regarded as a special category of Markov chain.

Random Walk Agorithms

- A random walk algorithm provides random walks in a graph.
- A random walk start at one node, choose a neighbor to navigate to at random or based on a provided probability distribution, and then do the same from that node, keeping the resulting walk in a list.
- It's similar to how a drunk person traverses a city.

Random Walk Agorithms ... Cont'd

- From the perspective of graph representation, let $G=(V, E)$ be a connected graph, where V is the vertex set and E is the edge set.
- The adjacency matrix of G is denoted as $A \in \mathrm{R}^{n \times n}$, where n is the number of nodes in G.
- $A_{i j}$ denotes the weight of edge from the node i to the node j.
- The transition probability (single step) from node i to node j on the graph can be defined as:

$$
p_{i j}=\frac{A_{i j}}{\sum_{j \in \mathrm{~V}} A_{i j}}
$$

Connectivity
 (next lesson)

Eulerian and Hamiltonian
Graphs, The Travelling
Salesperson Problem

6

Possible
Assignements

Some Possible Assignements

- Discuss the linear time solution for longest path detection in Directed Acyclic Graphs.
- Discuss the PageRank algorithm (which is based on Random Walks).
- Discuss a specific solution to the Travelling Salesperson Problem (Next Lesson).
- You can either present and discuss one of the above-mentioned problems, and/or present an implementation of the algorithm.

