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A Quick Recap

• A graph is a pair 𝐺 = (𝑉, 𝐸) of sets such that 𝐸 ⊆ 𝑉 2; thus, the 
elements of 𝐸 are 2-element subsets of 𝑉.

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}
𝐸 = {{𝑣𝑖 , 𝑣𝑘}} 𝑖, 𝑘 ∈ [1,… , 𝑛]

• The elements of 𝑉 are the vertices (or nodes, or points) of the graph 𝐺, 
the elements of 𝐸 are its edges (or lines, or arcs).

• The usual way to represent a graph is by drawing a dot for each 
vertex and joining two of these dots by a line if the corresponding two 
vertices form an edge.
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A Quick Recap … Cont’d

• The graph 𝐺 on: 

𝑉 = {1, . . . , 7} with edge set 𝐸 = {{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}}
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A Quick Recap … Cont’d

• Two vertices 𝑥, 𝑦 of 𝐺 are adjacent (or neighbors), if 𝑒 = {𝑥, 𝑦} is an 
edge adjacent of 𝐺.

• Two edges 𝑒 ≠ 𝑓 are adjacent if they have an end in common.

𝑥

𝑦
𝑒

𝑥

𝑦
𝑒 𝑓
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A Quick Recap … Cont’d

• Order of a graph: its number of vertices |𝑉|.

• Size of a graph: its number of edges |𝐸|.

𝐺 = 𝑉, 𝐸 → 𝑉 = 1, . . . , 7 , 𝐸 = {{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}}

𝑉 = 7

𝐸 = 5
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Null Graph

• In the mathematical field of graph theory, the term null graph may 
refer either to the order-zero graph, or alternatively, to any edgeless 
graph.

• The latter is sometimes called an empty graph.
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Null Graph (Order-zero Graph)

• The order-zero graph, denoted as 𝐾0, is the unique graph having no 
vertices (hence its order is zero).

• It follows that 𝐾0 also has no edges.

• For the order-zero graph 𝐾0 = 𝐺 = (∅, ∅) we simply write 𝐺 = ∅.

• A graph of order 0 (or 1) is called trivial.
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Null Graph (Empty Graph)

• For each natural number 𝑛, the edgeless graph (or empty graph) 𝐾𝑛
of order 𝑛 is the graph with 𝑛 vertices and zero edges.

• 𝐾𝑛 = 𝐺 = 𝑉, ∅ .
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Null Graph (Representations)

• Figure (𝒂) illustrates the null (oreder-zero) graph 𝐾0, while (𝒃) the null 
graph (empty graph) 𝐾6 with six vertices.

(a) (b)
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Complete Graph

• A graph in which each pair of distinct vertices are adjacent is called a 
complete graph.

• A complete graph with 𝑛 vertices is denoted by 𝐾𝑛. 

• 𝐾𝑛 contains 𝑛 𝑛 − 1

2
edges.
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Complete Graphs … Cont’d

• Figure (𝒃) illustrates a complete graph 𝐾6 with six vertices.

(a) (b)
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Walk

• A walk (of length 𝑘) in a graph 𝐺 is a non-empty alternating sequence 

𝑣0𝑒0𝑣1𝑒1 . . . 𝑒𝑘−1𝑣𝑘

of vertices and edges in 𝐺 such that 𝑒𝑖 = {𝑣𝑖 , 𝑣𝑖+1} for all 𝑖 < 𝑘.

• The length of a walk is 𝑘.
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Walk (Example)

• We often refer to a walk by the natural sequence of its vertices.

• The walk is denoted as 𝑎𝑏𝑐𝑑𝑏.
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Open / Closed Walk

• If the starting vertex is the same as the ending vertex, that is 𝑣0 = 𝑣𝑘 , 
the walk is closed.

• A walk is considered open otherwise.

• 𝑐𝑒𝑔𝑓𝑐 is a closed walk.

• If length of the walk = 0, then it is called                                                       
as a trivial walk.

• Both vertices and edges can repeat in                                                                                                                
a walk whether it is an open or a closed walk.
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Path

• A path is a non-empty graph 𝑃 = (𝑉, 𝐸) of the form:

𝑉 = 𝑥0, 𝑥1, … , 𝑥𝑘
𝐸 = { 𝑥0, 𝑥1 , {𝑥1, 𝑥2},… , {𝑥𝑘−1, 𝑥𝑘}}

where the 𝑥𝑖 are all distinct.

• The vertices 𝑥0 and 𝑥𝑘 are called the end-vertices or ends of 𝑃.

• The vertices 𝑥1, … , 𝑥𝑘−1 are the inner vertices of 𝑃.
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Path (Example)

• A path 𝑃 = 𝑃6 in 𝐺

• 𝑃 𝑉, 𝐸 → 𝑉 = 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ , 𝐸 = { 𝑏, 𝑐 , 𝑐, 𝑑 , 𝑑, 𝑒 , 𝑒, 𝑓 , 𝑓, 𝑔 , 𝑔, ℎ }

𝑎
𝑏

𝑐
ℎ

𝑑
𝑒

𝑓

𝑔

𝑏

𝑐
ℎ

𝑑
𝑒

𝑓

𝑔



Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Path (A Simpler Definition)

In graph theory, a path is defined as an open walk in which:

• Neither vertices are allowed to repeat.

• Nor edges are allowed to repeat.
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Path … Cont’d

• The number of edges of a path is its length.

• The path of length 𝑘 is denoted by 𝑃𝑘 .

• We often refer to a path by the natural sequence of its vertices, 
writing, say, 𝑃 = 𝑥0𝑥1…𝑥𝑘 , and calling 𝑃 a path from 𝑥0 to 𝑥𝑘 (as well as 
between 𝑥0 and 𝑥𝑘).
• More precisely, by one of the two natural sequences: 𝑥0𝑥1…𝑥𝑘 and 𝑥𝑘𝑥𝑘−1…𝑥0, 

we denote the same path.
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Path (Example)

• A path 𝑎𝑏𝑐𝑑𝑒 (𝒂) and … what about 𝑎𝑏𝑐𝑑𝑒𝑐 (𝒃)?

(a) (b)
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Trail

In graph theory, a trail is defined as an open walk in which:

• Vertices may repeat.
• Edges are not allowed to repeat.

• 𝑎𝑏𝑐𝑑𝑒𝑐 is a trail.
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Weight of a Walk (a Path, a Trail) 

• RECAP: a weighted graph associates a value (weight) with every 
edge in the graph.

• The weight of a walk (or trail or path) in a weighted graph is the sum 
of the weights of the traversed edges. 

• Sometimes the words cost, or length, are used instead of weight.
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Directed Walk, Path, Trail

• A directed walk is a sequence of edges directed in the same 
direction which joins a sequence of vertices.

• A directed path is a directed walk in which all vertices are distinct.

• A directed trail is a directed walk in which all edges are distinct.

• A weighted directed graph associates a value (weight) with every 
edge in the directed graph. 

• The weight of a directed walk (or trail or path) in a weighted 
directed graph is the sum of the weights of the traversed edges.
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Cycle

A possible formal definition

• If 𝑃 = 𝑥0…𝑥𝑘−1 is a path and 𝑘 ≥ 3, then the graph 𝐶 = 𝑃 + 𝑥𝑘−1𝑥0 is 
called a cycle.

More simply… In graph theory, a cycle is defined as a closed walk in 
which:

• Neither vertices (except possibly the starting and ending vertices) are 
allowed to repeat.

• Nor edges are allowed to repeat.
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Cycle … Cont’d

• As with paths, we often denote a cycle by its (cyclic) sequence of 
vertices.

• A cycle 𝐶 might be written as 𝑥0…𝑥𝑘−1𝑥0.

• The length of a cycle is its number of edges (or vertices).

• The cycle of length 𝑘 is called a 𝑘-cycle and denoted by 𝐶𝑘 .
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Cycle … Cont’d

• The minimum length of a cycle (contained) in a graph 𝐺 is the girth 
(calibro) 𝑔(𝐺) of 𝐺.

• The maximum length of a cycle in 𝐺 is its circumference 𝑐(𝐺).

• If 𝐺 does not contain a cycle, we set the former to ∞, the latter to zero.
• 𝑔(𝐺) = ∞
• 𝑐(𝐺) = 0
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Cycle (Example)

• The closed walk 𝑏𝑐𝑔𝑓 is a cycle.
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Cycle … Cont’d

• A cycle is odd if its length is odd.

• A cycle is even if its length is even.
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Bipartite Graps and Cycles

RECAP: In graph theory, a bipartite graph is a 
graph where:

• Vertices can be divided into two disjoint and 
independent sets 𝑋 and 𝑌.

• Such that every edge connects a vertex in 𝑋 to 
one in 𝑌.

• None of the vertices belonging to the same set 
join each other.

RECAP: A complete bipartite graph (or biclique)
is a special kind of bipartite graph where every 
vertex of the first set is connected to every vertex 
of the second set.

𝑋 𝑌
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Bipartite Graps and Cycles … Cont’d

• Bipartite graphs can be characterized in terms of odd cycles as 
follows.

• A graph 𝐺 is bipartite if and only if 𝐺 does not contain any odd cycle.

• Visual demonstration.
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Circuit

In graph theory, a circuit is defined as a closed walk in which:

• Vertices may repeat.
• But edges are not allowed to repeat.

OR

• In graph theory, a closed trail is called as a circuit.
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Circuit (Example)

• There are no edges repeated in the walk ℎ𝑏𝑐𝑑𝑒𝑓𝑐𝑔ℎ, hence the walk is 
certainly a trail and, since it is closed, it is a circuit.
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To recap…
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Exercises

• Consider the graph in the figure.

• For those sequences of vertices 
that are walks, decide whether 
they are a path, a trail, a cycle or a 
circuit.

• a , b , g , f , c , b
• b , g , f , c , b , g , a
• c , e , f , c
• c , e , f , c , e
• a , b , f , a
• f , d , e , c , b
• b, g, f, c, e, d, c, b

Trail
Walk
Cycle
Walk
Not a walk
Path
Circuit
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Exercises … Cont’d

• Consider the following sequences 
of vertices:
a. x, v, y, w, v
b. x, u, x, u, x
c. x, u, v, y, x
d. x, v, y, w, v, u, x

• Which are directed walks?
• What are the lengths of directed 

walks?
• Which directed walks are also 

directed paths?
• Which directed walks are also 

directed cycles?

a. and b.

4

none

none



Algorithms
Dijkstra’s and Floyd-Warshall
algorithms, Random Walks
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Finding Paths

• Several algorithms exist to find shortest and longest paths in graphs, 
with the important distinction that the former problem is 
computationally much easier than the latter.

• The longest path problem is the problem of finding a path of 
maximum length between two vertices in a given graph.

• The shortest path problem is the problem of finding a path of 
minimum length between two vertices in a given graph.

• The length of a path may either be measured by its number of 
edges, or (in weighted graphs) by the sum of the weights of its edges.
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Longest and Shortest Paths (Complexity)

• The longest path problem is NP-hard and the decision version of the 
problem, which asks whether a path exists of at least some given 
length, is NP-complete.
• However, it has a linear time solution for Directed Acyclic Graphs, which has 

important applications in finding the critical path in scheduling problems.

• The shortest path problem can be solved in polynomial time in 
graphs without negative-weight cycles.
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Shortest Path Problems

• The Single-Source Shortest Path (SSSP) problem consists of finding 
the shortest paths between a given vertex 𝑣 and all other vertices in 
the graph. 
• Algorithms such as Breadth-First-Search (BFS) for unweighted graphs or 

Dijkstra’s solve this problem.

• The All-Pairs Shortest Path (APSP) problem consists of finding the 
shortest path between all pairs of vertices in the graph. 
• To solve this second problem, one can use the Floyd-Warshall algorithm or 

apply the Dijkstra’s algorithm to each vertex in the graph.
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The Dijkstra’s Algorithm

• The Dijkstra’s algorithm works only for connected (directed or 
undirected) graphs.

• Dijkstra algorithm works only for those graphs that do not contain 
any negative weight edge.

• The actual Dijkstra’s algorithm does not output the shortest paths.
• It only provides the value or cost of the shortest paths.
• By making minor modifications in the actual algorithm, the shortest paths 

can be easily obtained.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische mathematik, 1(1), 269-271.



Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Basics of Dijkstra's Algorithm

• Dijkstra's Algorithm starts with a source node, and it analyzes the graph 
to find the shortest path between that node and all the other nodes in the 
graph.

• The algorithm keeps track of the currently known shortest distance from 
each node to the source node and it updates these values if it finds a 
shorter path.

• Once the algorithm has found the shortest path between the source node 
and another node, that node is marked as "visited" and added to the path.

• The process continues until all the nodes in the graph have been added to 
the path. This way, we have a path that connects the source node to all 
other nodes following the shortest path possible to reach each node.
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Dijkstra’s Algorithm – Example

• Let us consider a graph with weighted edges. 

• This graph can either be directed                                                                         
or undirected.

• Here we will use an                                                                                                
undirected graph. A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Initialization

• Let 𝒔 the node at which we are starting be called the start vertex. 

For each vertex of the given graph, two variables are defined as:

• 𝚷[𝒗] which denotes the predecessor of vertex 𝑣

• 𝒅[𝒗] which denotes the shortest distance of vertex 𝑣 from the source 
vertex.

Furthermore:

• Create a set 𝑸 of all the unvisited nodes called the unvisited set.



Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Initialization

Dijkstra's algorithm will assign some initial values and will try to 
improve them step by step.

Initially, the value of the considered variables is set as:

• The value of variable ‘Π’ for each vertex is set to NIL i.e., 𝚷[𝒗] = NIL
• The value of variable ‘𝑑’ for source vertex is set to 0 i.e., 𝒅[𝒔] = 𝟎
• The value of variable ‘𝑑’ for remaining vertices is set to ∞ i.e., 𝒅[𝒗] = ∞

Furthermore:

• Mark all nodes as unvisited, i.e., 𝑸 = 𝑽.
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Dijkstra’s Algorithm – Running Example (Start)

• 𝑄 = 𝑉 = 𝐴,𝐵, 𝐶, 𝐷, 𝐸
• 𝑑 𝐴 = 0, 𝑑 𝐵 = 𝑑 𝐶 = 𝑑 𝐷 = 𝑑 𝐸 = ∞
• Π 𝐴 = Π 𝐵 = Π 𝐶 = Π 𝐷 = Π[𝐸] = NIL

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start 
vertex.

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

A B

D E

C

6

1

1

2
2

5

5

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL



Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start 
vertex.
• The first time, it is the start vertex itself.

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

A B

D E

C

6

1

1

2
2

5

5

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• Its unvisited neighbors are B and D.

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from 
the start vertex.
• I.e., 𝑑[𝐴] + 𝑑𝑖𝑠𝑡(𝐴, 𝐵), 𝑑[𝐴] + 𝑑𝑖𝑠𝑡(𝐴, 𝐷)

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from 
the start vertex.
• I.e., 𝑑[𝐴] + 𝑑𝑖𝑠𝑡(𝐴, 𝐵), 𝑑[𝐴] + 𝑑𝑖𝑠𝑡(𝐴, 𝐷)

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

0 + 6 = 6

0 + 1 = 1
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Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the 
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐴 + 𝑑𝑖𝑠𝑡 𝐴, 𝐵 < 𝑑 𝐵 → 𝑑 𝐵 = 𝑑 𝐴 + 𝑑𝑖𝑠𝑡 𝐴, 𝐵

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

A B

D E

C

6

1

1

2
2

5

5

0 + 6 = 6

0 + 1 = 1

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B ∞ NIL

C ∞ NIL

D ∞ NIL

E ∞ NIL
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Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the 
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐴 + 𝑑𝑖𝑠𝑡 𝐴, 𝐵 < 𝑑 𝐵 → 𝑑 𝐵 = 𝑑 𝐴 + 𝑑𝑖𝑠𝑡 𝐴, 𝐵

• 𝑄 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 𝟔 A

C ∞ NIL

D 𝟏 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

6 < ∞

1 < ∞
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Dijkstra’s Algorithm – Running Example (Cont’d)

• When we are done considering all the unvisited neighbors of the 
current node, mark the current node as visited and remove it from 
the unvisited set. A visited node will never be checked again.

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 6 A

C ∞ NIL

D 1 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start 
vertex.
• This time, the vertex is D.

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 6 A

C ∞ NIL

D 1 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• Its unvisited neighbors are B and E.

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 6 A

C ∞ NIL

D 1 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from 
the start vertex.
• I.e., 𝑑[𝐷] + 𝑑𝑖𝑠𝑡(𝐷, 𝐵), 𝑑[𝐷] + 𝑑𝑖𝑠𝑡(𝐷, 𝐸)

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 6 A

C ∞ NIL

D 1 A

E ∞ NIL

A B

D E

C

6

1

1

2
2

5

5

1 + 2 = 3

1 + 1 = 2
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Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the 
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐷 + 𝑑𝑖𝑠𝑡 𝐷, 𝐵 < 𝑑 𝐵 → 𝑑 𝐵 = 𝑑 𝐷 + 𝑑𝑖𝑠𝑡 𝐷, 𝐵

• 𝑄 = {𝐵, 𝐶, 𝐷, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 𝟑 D

C ∞ NIL

D 1 A

E 𝟐 D

A B

D E

C

6

1

1

2
2

5

5

3 < 6

2 < ∞
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Dijkstra’s Algorithm – Running Example (Cont’d)

• When we are done considering all the unvisited neighbors of the 
current node, mark the current node as visited and remove it from 
the unvisited set. A visited node will never be checked again.

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C ∞ NIL

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start 
vertex.
• This time, the vertex is E.

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C ∞ NIL

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• Its unvisited neighbors are B and C.

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C ∞ NIL

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from 
the start vertex.
• I.e., 𝑑[𝐸] + 𝑑𝑖𝑠𝑡(𝐸, 𝐵), 𝑑[𝐸] + 𝑑𝑖𝑠𝑡(𝐸, 𝐶)

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C ∞ NIL

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

2 + 2 = 4

2 + 5 = 7
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Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the 
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐸 + 𝑑𝑖𝑠𝑡 𝐸, 𝐵 < 𝑑 𝐵 → 𝑑 𝐵 = 𝑑 𝐸 + 𝑑𝑖𝑠𝑡 𝐸, 𝐵

• 𝑄 = {𝐵, 𝐶, 𝐸}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 𝟕 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

4 > 3

7 < ∞
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Dijkstra’s Algorithm – Running Example (Cont’d)

• When we are done considering all the unvisited neighbors of the 
current node, mark the current node as visited and remove it from 
the unvisited set. A visited node will never be checked again.

• 𝑄 = {𝐵, 𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• Its only unvisited neighbor is C.

• 𝑄 = {𝐵, 𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, calculate the distance of each neighbor from 
the start vertex.
• I.e., 𝑑[𝐵] + 𝑑𝑖𝑠𝑡(𝐵, 𝐶)

• 𝑄 = {𝐵, 𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

3 + 5 = 8



Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Running Example (Cont’d)

• If the calculated distance is less then the know distance for the 
neighbors, update the shortest distance.
• E.g, if 𝑑 𝐵 + 𝑑𝑖𝑠𝑡 𝐵, 𝐶 < 𝑑 𝐶 → 𝑑 𝐶 = 𝑑 𝐵 + 𝑑𝑖𝑠𝑡 𝐵, 𝐶

• 𝑄 = {𝐵, 𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5

8 > 7
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Dijkstra’s Algorithm – Running Example (Cont’d)

• When we are done considering all the unvisited neighbors of the 
current node, mark the current node as visited and remove it from 
the unvisited set. A visited node will never be checked again.

• 𝑄 = {𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• Visit the unvisited vertex with the smallest distance from the start 
vertex.
• This time, the vertex is C.

• 𝑄 = {𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• For the current vertex, examine its unvisited neighbors.
• NO unvisited neighbors.

• 𝑄 = {𝐶}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• Remove the current vertex from the list of unvisited vertices.

• 𝑄 = {}

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D

A B

D E

C

6

1

1

2
2

5

5
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Dijkstra’s Algorithm – Running Example (Cont’d)

• We have the shortest distance from A to every other vertex

A B

D E

C

6

1

1

2
2

5

5

Vertex
Shortest

distance from A
Previous vertex

A 0 NIL

B 3 D

C 7 E

D 1 A

E 2 D



Graph Theory and Algorithms Ph.D. Course – Marco Viviani

Dijkstra’s Algorithm – Pseudocode
1  function Dijkstra(Graph, source):

2

3      create vertex set Q

4

5      for each vertex v in Graph:            

6          dist[v] ← INFINITY                 

7          prev[v] ← NIL                

8          add v to Q                     

9      dist[source] ← 0                       

10     

11      while Q is not empty:

12          u ← vertex in Q with min dist[u]   

13                                             

14          remove u from Q

15         

16          for each neighbor v of u:           // only v that are still in Q

17              alt ← dist[u] + length(u, v)

18              if alt < dist[v]:              

19                  dist[v] ← alt

20                  prev[v] ← u

21

22      return dist[], prev[]
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The Floyd-Warshall Algorithm

• The Floyd-Warshall algorithm is an algorithm for finding the 
shortest path between all the pairs of vertices in a weighted graph. 

• This algorithm works for both the directed and undirected weighted 
graphs. 

• It works for graphs with positive or negative edge weights, but it does 
not work for the graphs with negative cycles (where the sum of the 
edges in a cycle is negative).

Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6), 345.
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Floyd-Warshall Algorithm – Step 1

• Create an adjacency matrix 𝐴0 of dimension 𝑛 ∗ 𝑛 where 𝑛 is the 
number of vertices. The row and the column are indexed as 𝑖 and 𝑗
respectively.

• Each cell 𝐴0[𝑖][𝑗] is filled with the weight on the edge from the 𝑖th
vertex to the adjecent 𝑗th vertex.

• If the 𝑖th vertex and the 𝑗th vertex are not adjacent, the value of the 
cell is left as infinity.
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Floyd-Warshall Algorithm – Step 1 
(Example)

𝐴0 =

1 2

4 3

8

3

2
52

7

1

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 ∞

3 5 ∞ 0 1

4 2 ∞ ∞ 0
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Floyd-Warshall Algorithm – Step 2

• Now, create a matrix 𝑨𝟏 using matrix 𝐴0.

• The elements in the first column and the first row are left as they are.

• The remaining cells are filled in the following way:
• In this step, 𝑘 is vertex 1. We calculate the distance from source vertex to 

destination vertex through this vertex 𝑘.
• 𝐴1[𝑖][𝑗] is filled with (𝐴0[𝑖][𝑘] + 𝐴0[𝑘][𝑗]) if (𝐴0[𝑖][𝑗] > 𝐴0[𝑖][𝑘] + 𝐴0[𝑘][𝑗]).

• That is, if the direct distance from the source to the destination is 
greater than the path through the vertex 𝑘, then the cell is filled with 
𝐴[𝑖][𝑘] + 𝐴[𝑘][𝑗].
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1 2 3 4

1 0 3 ∞ 7

2 8 0 2 ∞

3 5 ∞ 0 1

4 2 ∞ ∞ 0

Floyd-Warshall Algorithm – Step 2 
(Example)
• 𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])

• 𝑨𝟏 𝟐 𝟑 = min(𝑨𝟎 𝟐 𝟑 ,𝑨𝟎[𝟐][𝟏] + 𝑨𝟎[𝟏][𝟑])

1 2

4 3

8

3

2
52

7

1

𝐴0 = 𝐴1 =

1 2 3 4

1 0 3 ∞ 7

2 8 0

3 5 0

4 2 0

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 15

3 5 8 0 1

4 2 5 ∞ 0
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1 2 3 4

1 0 3 ∞ 7

2 8 0 2 ∞

3 5 ∞ 0 1

4 2 ∞ ∞ 0

Floyd-Warshall Algorithm – Step 2 
(Example)
• 𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])

• 𝑨𝟏 𝟐 𝟒 = min(𝑨𝟎 𝟐 𝟒 ,𝑨𝟎[𝟐][𝟏] + 𝑨𝟎[𝟏][𝟒])

1 2

4 3

8

3

2
52

7

1

𝐴0 = 𝐴1 =

1 2 3 4

1 0 3 ∞ 7

2 8 0

3 5 0

4 2 0

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 15

3 5 8 0 1

4 2 8 ∞ 0
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Floyd-Warshall Algorithm – Further Steps

• The algorithm is applied until 𝑘 = 𝑛 (number of vertices)

• Pseudocode:

n = no of vertices

A = matrix of dimension n*n

for k = 1 to n

for i = 1 to n

for j = 1 to n

Ak[i,j] = min(Ak-1[i,j], Ak-1[i,k] + Ak-1[k, j])

return A
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Floyd-Warshall Algorithm – Further Steps
(Examples)

1 2 3 4

1 0 3 ∞ 7

2 8 0 2 15

3 5 8 0 1

4 2 5 ∞ 0

𝐴1 = 𝐴2 =

1 2 3 4

1 0 3

2 8 0 2 15

3 8 0

4 5 0

1 2 3 4

1 0 3 5 7

2 8 0 2 15

3 5 8 0 1

4 2 5 7 0

𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])
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Floyd-Warshall Algorithm – Further Steps
(Examples)

1 2 3 4

1 0 3 5 7

2 8 0 2 15

3 5 8 0 1

4 2 5 7 0

𝐴2 = 𝐴3 =

1 2 3 4

1 0 5

2 0 2

3 5 8 0 1

4 7 0

1 2 3 4

1 0 3 5 6

2 7 0 2 3

3 5 8 0 1

4 2 5 7 0

𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])
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Floyd-Warshall Algorithm – Further Steps
(Examples)

1 2 3 4

1 0 3 5 6

2 7 0 2 3

3 5 8 0 1

4 2 5 7 0

𝐴3 = 𝐴4 =

1 2 3 4

1 0 6

2 0 3

3 0 1

4 2 5 7 0

1 2 3 4

1 0 3 5 6

2 5 0 2 3

3 3 6 0 1

4 2 5 7 0

𝐴𝑘[𝑖, 𝑗] = min(𝐴𝑘−1 𝑖, 𝑗 , 𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗])
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Dijkstra’s VS Floyd–Warshall

• Dijkstra’s algorithm is one example of a single-source shortest or 
SSSP algorithm, i.e., given a source vertex it finds shortest path from 
source to all other vertices.

• Floyd Warshall algorithm is an example of all-pairs shortest path 
algorithm, meaning it computes the shortest path between all pair of 
nodes.
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Dijkstra’s VS Floyd–Warshall … Cont’d

• Time Complexity of Dijkstra’s Algorithm: 𝑂(𝐸 log 𝑉)

• Time Complexity of Floyd-Warshall: 𝑂(𝑉3)

• We can use Dijskstra’s shortest path algorithm for finding all pair 
shortest paths by running it for every vertex. But time complexity of 
this would be 𝑂(𝑉𝐸 log 𝑉) which can go (𝑉3 log 𝑉) in worst case.
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Random Walk - Origins

• The concept of random walk was firstly introduced by Pearson in 
1905 [1].

• Spitzer [2] gives a complete review of random walks for mathematical 
researchers and clearly presents the mathematical principles of 
random walks.

[1] Pearson, K. (1905). The problem of the random walk. Nature, 72(1867), 342-342.
[2] Spitzer, F. (2013). Principles of random walk (Vol. 34). Springer Science & Business Media.
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Classical Random Walks

• A random walk is known as a random process.

• It describes a walk consisting of a succession of random steps on 
some mathematical space, which can be denoted as

{𝜉𝑡 , 𝑡 = 0, 1, 2, … }

• 𝜉𝑡 is a random variable describing the position of a random walk after 
𝑡 steps.

• The sequence can also be regarded as a special category of Markov 
chain.
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Random Walk Agorithms

• A random walk algorithm provides random walks in a graph.

• A random walk start at one node, choose a neighbor to navigate to at 
random or based on a provided probability distribution, and then do 
the same from that node, keeping the resulting walk in a list. 
• It’s similar to how a drunk person traverses a city.
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Random Walk Agorithms … Cont’d

• From the perspective of graph representation, let 𝐺 = (𝑉, 𝐸) be a 
connected graph, where 𝑉 is the vertex set and 𝐸 is the edge set. 

• The adjacency matrix of 𝐺 is denoted as 𝐴 ∈ R𝑛×𝑛, where 𝑛 is the 
number of nodes in 𝐺. 

• 𝐴𝑖𝑗 denotes the weight of edge from the node 𝑖 to the node 𝑗. 

• The transition probability (single step) from node 𝑖 to node 𝑗 on the 
graph can be defined as:

𝑝𝑖𝑗 =
𝐴𝑖𝑗

σ𝑗∈V𝐴𝑖𝑗



Connectivity
(next lesson)
Eulerian and Hamiltonian 

Graphs, The Travelling 
Salesperson Problem

5



Possible 
Assignements

6
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Some Possible Assignements

• Discuss the linear time solution for longest path detection in 
Directed Acyclic Graphs.

• Discuss the PageRank algorithm (which is based on Random Walks).

• Discuss a specific solution to the Travelling Salesperson Problem
(Next Lesson).

• You can either present and discuss one of the above-mentioned 
problems, and/or present an implementation of the algorithm.


