

A M D

GLM

Modello Lineare Generale vantaggi

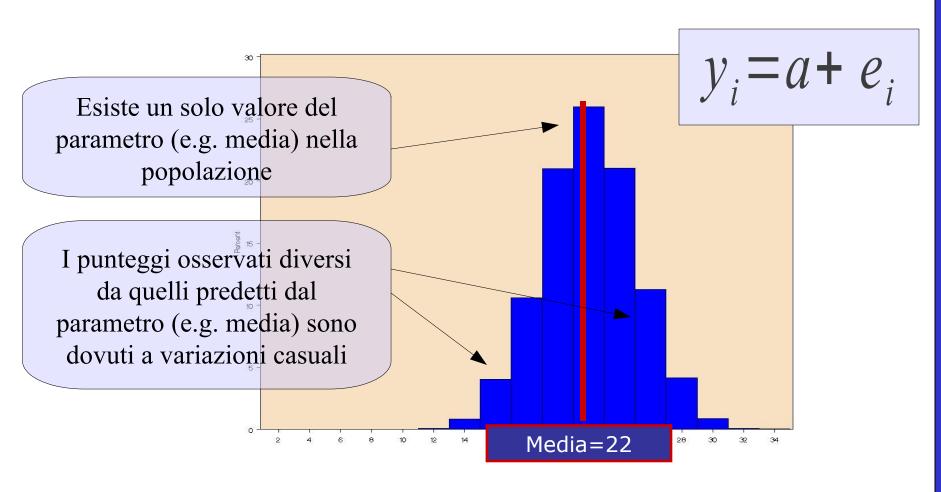
- Consente di stimare le relazioni fra due o più variabili
- Si applica ad una ampio spettro di tipi di dati
- Consente di stimare vari tipi di effetti

svantaggi

- Assume una struttura dei dati molto semplice
- Non consente di modellare una ampia serie di relazioni e dipendenza tra unità di misurazione

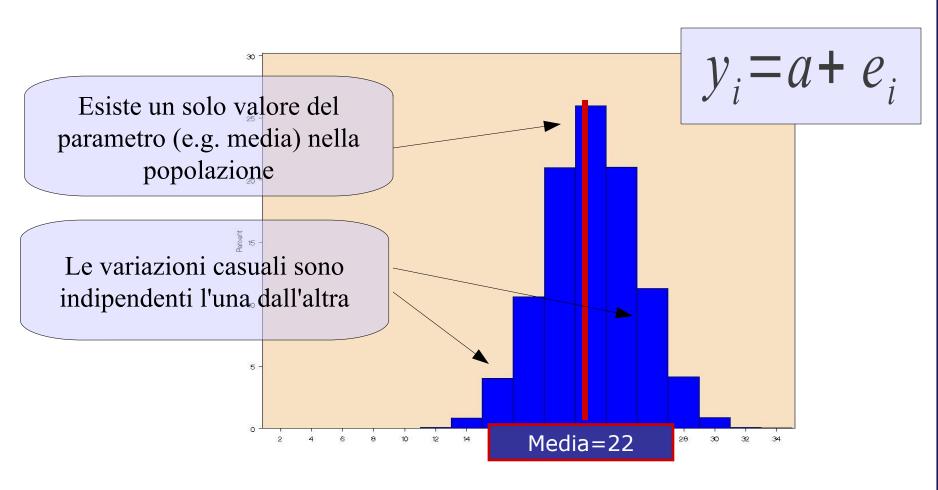
Assunzioni GLM

Modello Lineare Generale



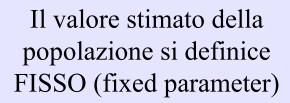
Assunzioni GLM

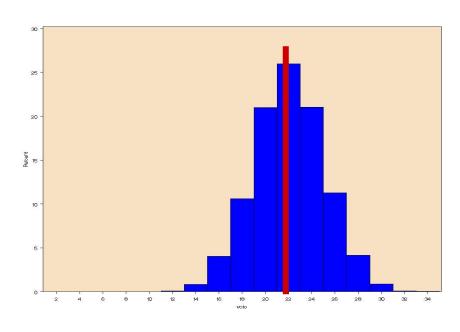
Modello Lineare Generale



Assunzioni GLM

Modello Lineare Generale





$$y_i = a + e_i$$

$$corr(e_i, e_j) = 0$$

Le variazioni casuali sono indipendenti l'una dall'altra

Violazioni delle assunzioni

Le assunzioni di unicità degli effetti (effetti fissi) e indipendenza delle misurazioni (errori indipendenti) non sono rispettate in tutti i seguenti casi:

- Misurazioni correlate
- Disegni a misure ripeture
- Disegni longitudinali
- Dati con strutture gerarchiche
- Dati con misurazioni multi-livello

• I modelli misti

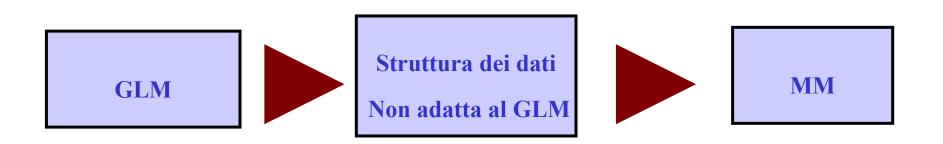
Non esiste un solo valore fisso che intendiamo stimare

Le variazioni casuali **non** sono indipendenti l'una dall'altra

I modelli misti consentono di estendere il modello lineare generale in tutte quelle situazioni in cui le due assunzioni fondamentali del GLM non sono rispettate

Il modello misto

Per capire i Modelli Misti basta capire come essi generalizzano il GLM



Estensione del GLM al modello misto

Esempio "birre" 2

Consideriamo il caso in cui abbiamo ampliato il nostro campione di

"bevitori di birra", avendo raccolto ulteriori dati in diversi bar della città

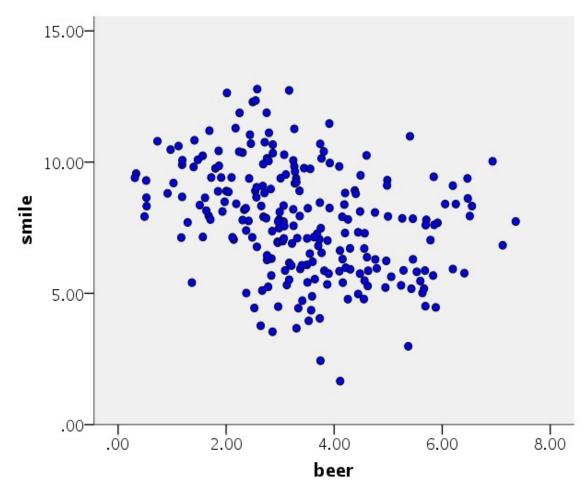
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	a	3	1.3	1.3	1.3
	b	14	6.0	6.0	7.3
	С	22	9.4	9.4	16.7
	d	21	9.0	9.0	25.6
	e	14	6.0	6.0	31.6
	f	20	8.5	8.5	40.2
	g	24	10.3	10.3	50.4
	h	12	5.1	5.1	55.6
	İ	16	6.8	6.8	62.4
	1	22	9.4	9.4	71.8
	m	21	9.0	9.0	80.8
	n	15	6.4	6.4	87.2
	0	16	6.8	6.8	94.0
	р	11	4.7	4.7	98.7
	q	3	1.3	1.3	100.0
	Total	234	100.0	100.0	

Totale di 234 soggetti

Esempio "birre" 2

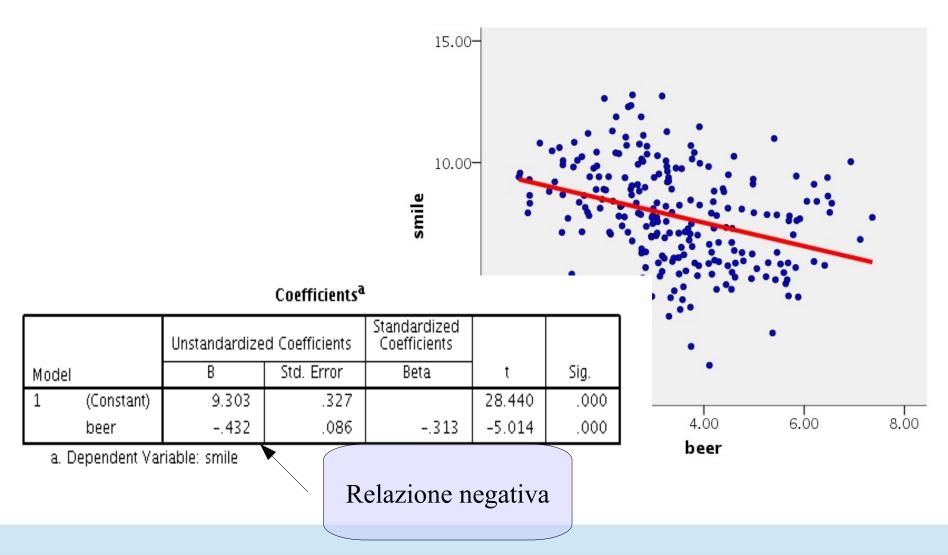
Lo scatterplot mostra una distribuzione differente dall'esempio

precedente



Esempio "birre" 2

La regressione semplice conferma il risultato assai differente



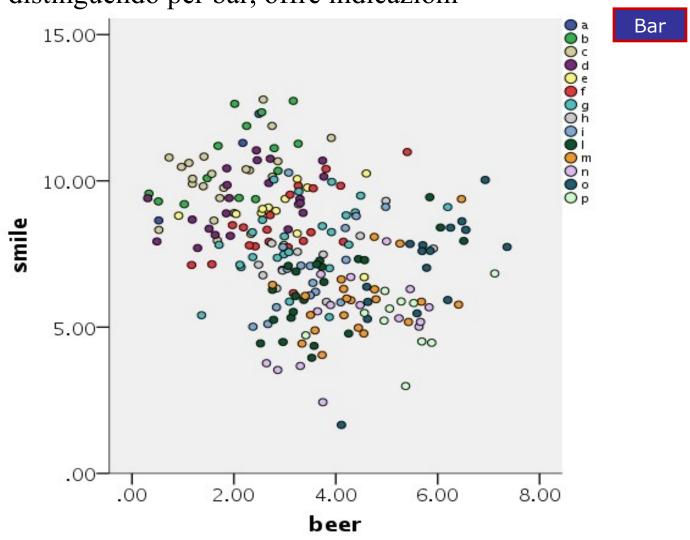
Possibili spiegazioni

I risultati potrebbero essere distorti (e ciò spiegherebbe il risultato inatteso) dal non aver considerato la struttura dei dati

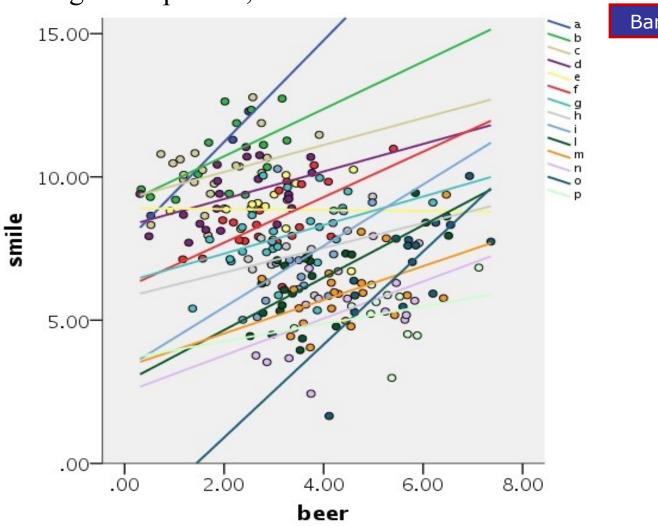
• I dati infatti:

- I soggetti sono stati campionati in diversi bar
- Ogni bar potrebbe avere caretteristiche particolari (ambiente, qualità della birra, etc) che condizionano la relazione tra le variabili
- I soggetti in ogni singolo bar potrebbero essere più simili tra loro di quando lo siano soggetti in bar diversi

Lo scatterplot, distinguendo per bar, offre indicazioni

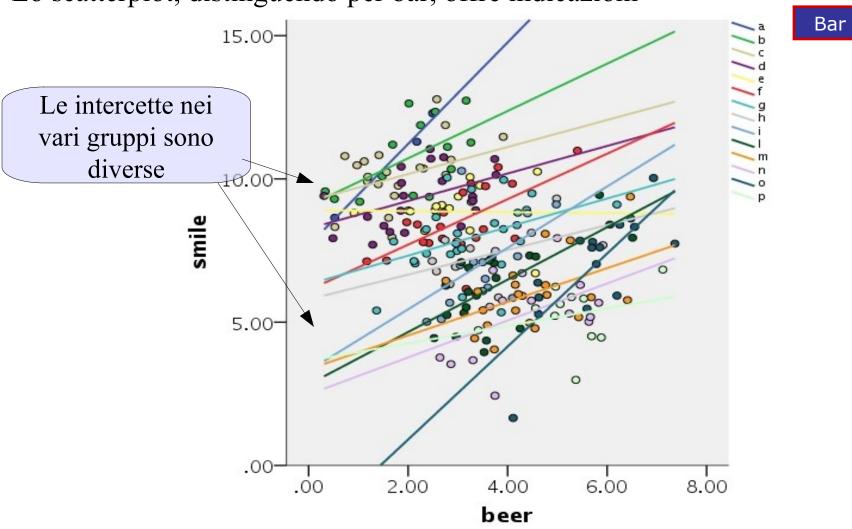


Lo scatterplot, distinguendo per bar, offre indicazioni

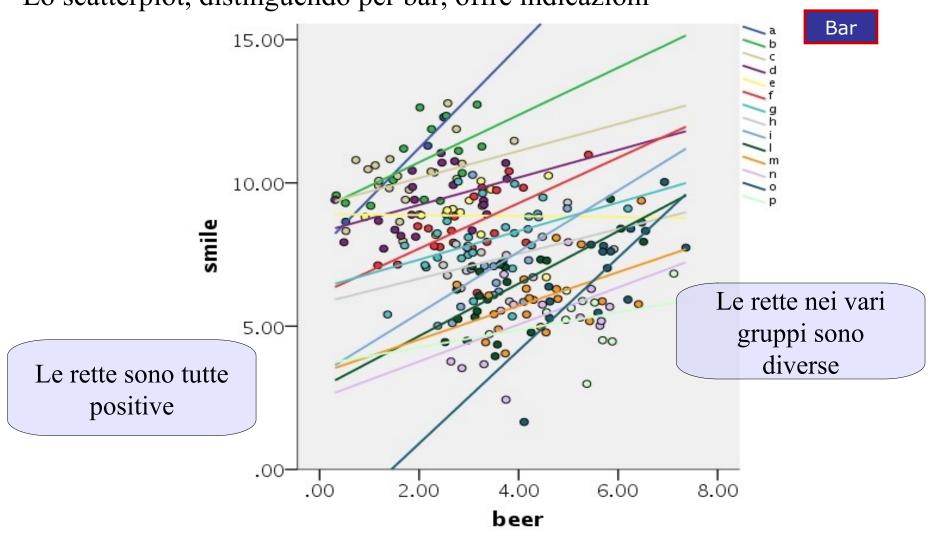


Bar

Lo scatterplot, distinguendo per bar, offre indicazioni



Lo scatterplot, distinguendo per bar, offre indicazioni



Modello

- Sembrerebbe che considerando tutti i soggetti come equivalenti ed indipendenti (assunzione della regressione) otteniamo un risultato distorto
- Se stimassimo un modello in cui la retta di regressione (intercetta e coefficiente B) sia diversa in ogni gruppo, avremmo dei risultati più soddisfacenti

Modello

Definiamo dunque una regressione per ogni gruppo

$$y_{ij}$$

Numero di sorrisi del soggetto i nel gruppo j

$$\hat{y}_{ia} = a_a + b_a \cdot x_{ia}$$

$$\hat{y}_{ib} = a_b + b_b \cdot x_{ib}$$

$$\hat{y}_{ic} = a_c + b_c \cdot x_{ic}$$

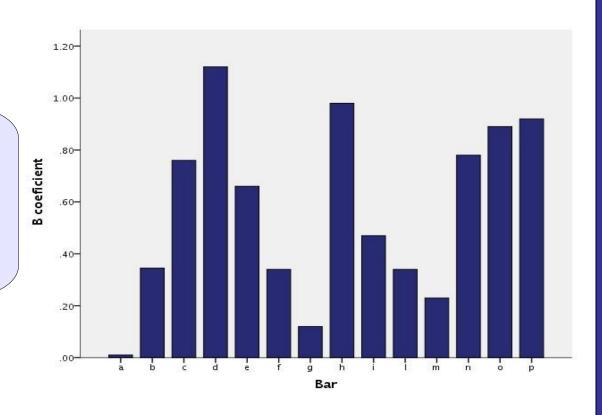
$$\hat{y}_{ij} = a_j + b_j \cdot x_{ij}$$

In queste regressioni, sia l'intercetta che i coefficienti sono diversi (non fissi) nei vari gruppi

Coefficienti variabili

• Se i coefficienti cambiano nei vari gruppi, ovviamente non sono fissi (!!!)

I coefficienti avranno una distribuzione rispetto ai bar per i quali sono calcolati

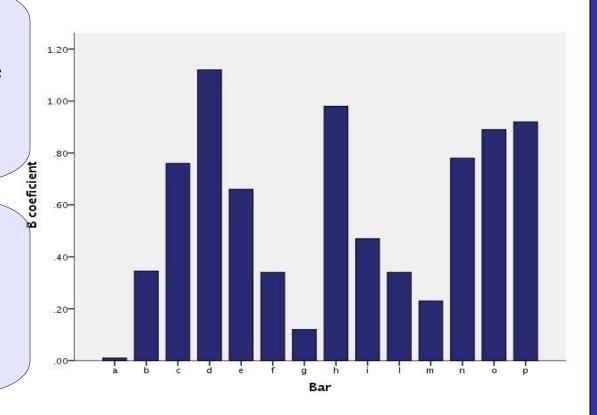


Coefficienti random

I coefficienti che cambiano sono definiti coefficienti random

I coefficienti avranno una distribuzione random (cioè avranno una loro variabilità)

Cioè, nella popolazione esiste una variazione random dei coefficienti

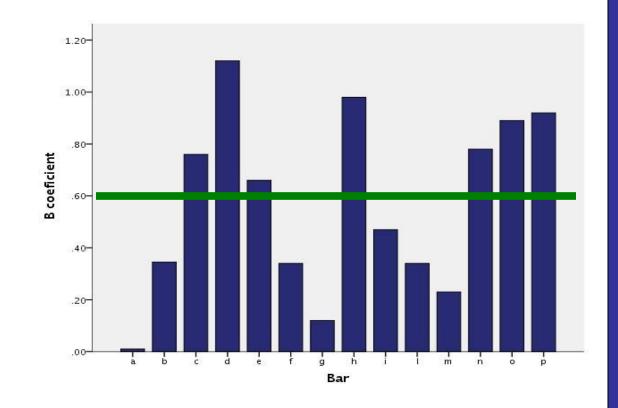


Media dei Coefficiente

• Se i coefficienti sono delle variabili, avranno una loro **media** ed una loro **varianza**

MEDIA

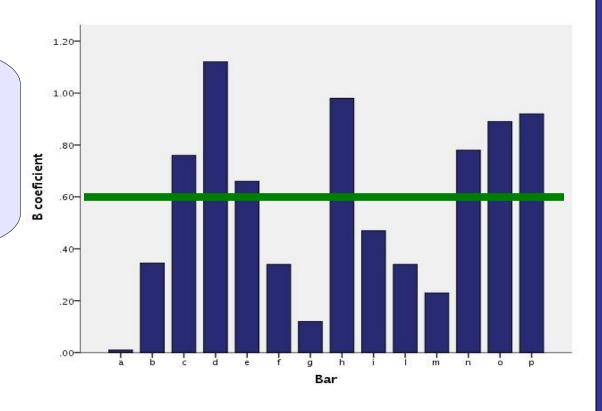
$$\bar{b} = \frac{\sum_{j} b_{j}}{k}$$



Coefficienti fissi

• La media dei coefficienti per bar indica la relazione (media) tra birre e sorrisi in tutto il campione

La media (come visto prima) è un parametro fisso del modello che descrive la distribuzione dei coefficienti nei cluster (bar)



Modello

Definiamo ora un modello con le varie regressioni per cluster e
 la loro media

Una regressione per cluster

Ogni coefficiente è espresso come deviazione dalla media dei coefficienti

$$\hat{y}_{ij} = a_j + b_j \cdot x_{ij}$$

$$b'_j = b_j - \bar{b}$$

$$a'_j = a_j - \bar{a}$$

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

• Definiamo ora un modello con le varie regressioni per cluster e la loro media

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

Coefficienti random

Coefficiente fisso

I modelli che contengono coefficienti sia random che fissi sono definiti modelli misti (mixed models)

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

Il punteggio della VD (i sorrisi) di ogni soggetto in un dato cluster (bar) è influenzato da:

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{q} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

La media dei valori attesi di Y per x=0

Per x=0, in media quanto è grande y

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

I valori attesi di y per x=0 in ogni cluster (bar)

Per x=0, quanto devo aggiungere o sottrarre al valore atteso medio per un cluster specifico

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

L'effetto specifico di x su y per il cluster j

In un dato cluster, quanto aumenta (o diminuisce) l'effetto di x su y

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

L'effetto medio di x su y

In media, quanto aumenta y per ogni unità in più di x

GLM come sottocaso

La corrispondenza logica tra le varie tecniche inerenti al Modello Lineare Generale con le tecniche inerenti ai Modelli Misti è data dal fatto che il GLM può essere pensato come sottocaso dei MM

MM

$$\hat{y}_{ij} = \overline{a} + a'_{j} + b'_{j} \cdot x_{ij} + \overline{b} \cdot x_{ij}$$

GLM

$$\hat{y}_{ij} = \hat{a} + \overline{b} \cdot x_{ij}$$

Notazione

Per chiarezza, useremo questa notazione

$$y_{ij} = \overline{a} + a_j + b_j \cdot x_{ij} + \overline{b} \cdot x_{ij} + e_{ij}$$

 y_{ij} , x_{ij}

Variabili osservate per caso i nel cluster j

 \bar{a} , \bar{b}

Effetti fissi

 a_j, b_j

Effetti random calcolati nel cluster j espressi come deviazione dalla loro media

 e_{ij}

Errore associato al singolo caso i

Varianze

Per chiarezza, useremo questa notazione

$$y_{ij} = \overline{a} + a_j + b_j \cdot x_{ij} + \overline{b} \cdot x_{ij} + e_{ij}$$

 σ_a

Varianza dei coefficienti a

 σ_b

Varianza dei coefficienti b

O

Varianza di errore

 σ_{ab}

Covarianza tra i coefficienti a e b

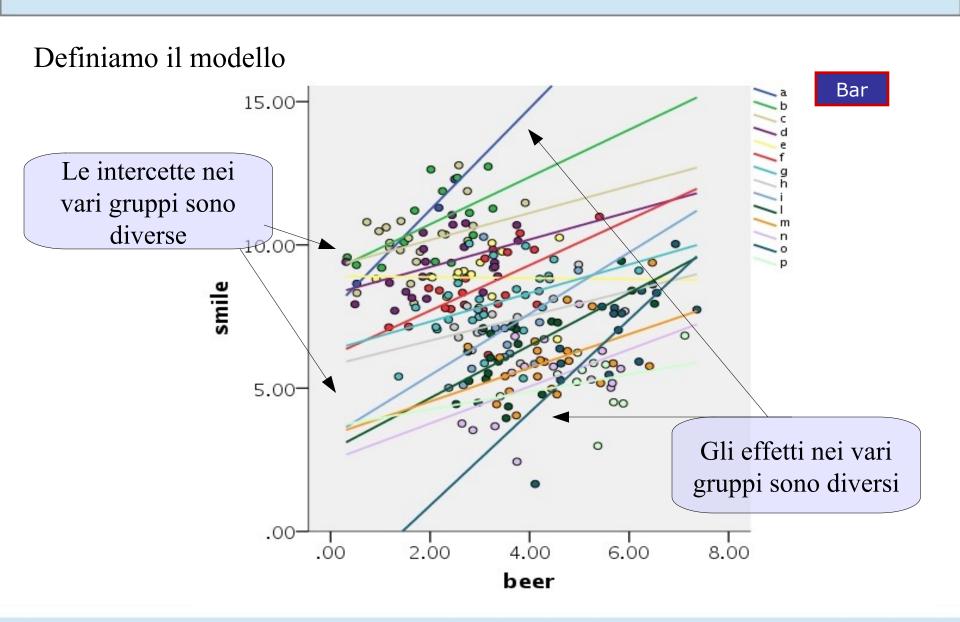
Modelli Misti

- In sostanza, i modelli misti consentono di stimare gli effetti di VI su una VD, consentendo a tali effetti di variare in diverse unità di misurazione (cluster).
- Gli effetti che variano sono detti effetti random
- Gli effetti che non variano (cioè gli effetti medi uguali per tutto il campione) sono detti **effetti fissi**

Modelli Misti

- Per stimare correttamente un modello misto, si deve semplicemente capire quale siano gli effetti random, e per quali unità variano (quali sono i cluster)
- Una volta stimato il modello, gli **effetti fissi** si interpretano esattamente come nel GLM (regressione/anova etc)
- Gli **effetti random** generalmente non si interpretano, ma se ne può studiare la variabilità
- La definizione corretta del modello, consente di ottenere stime e errori standard (e dunque test inferenziali) corretti

Birre al Bar



Birre al Bar

Definiamo un modello dove le intercette e i coefficienti di regressione possono variare nei diversi bar,

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + b \cdot x_{ij} + e_{ij}$$

- Quali sono gli effetti fissi? Intercetta e effetto di birre
- Quali sono gli effetti random? Intercetta ed effetto di birre
- Quali sono i cluster su cui variano gli effetti random? bar

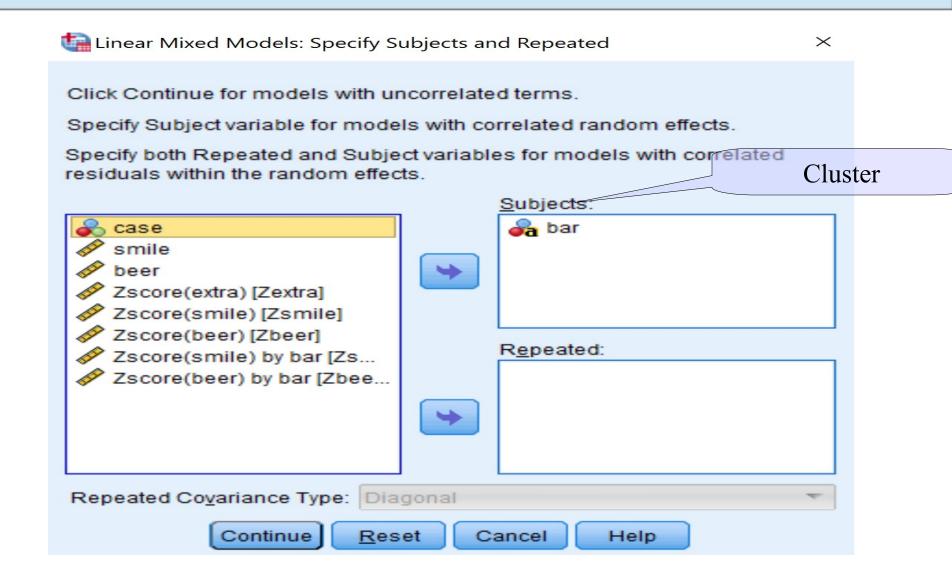
Vari autori e libri definiscono questo modello:

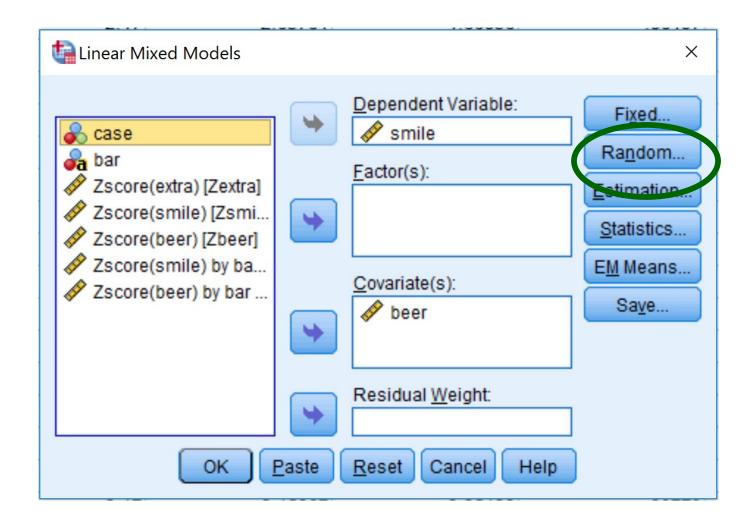
Random-coefficients regression
Altri come

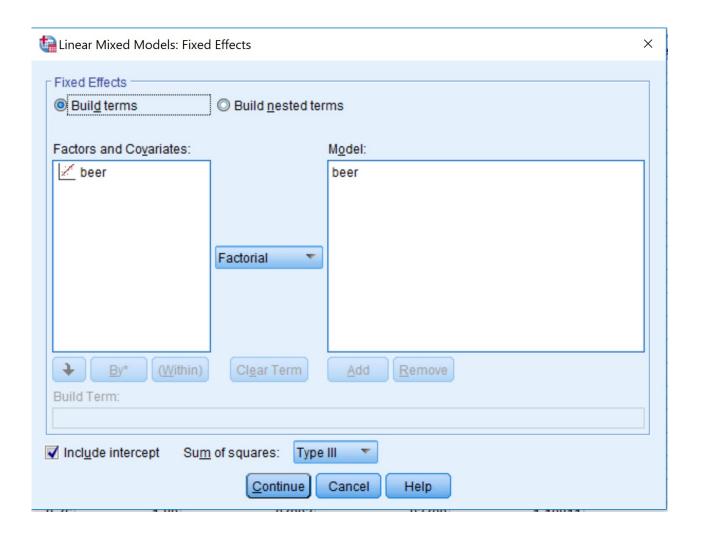
Intercepts- and Slopes-as-outcomes model

SPSS Statistics Data Editor

	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp)	
	Repo	rts		-	**			\$ ₹
	D <u>e</u> sci	riptive Stati	stics	-				
	Ta <u>b</u> le	s		-				
	Co <u>m</u> p	are Means	3	-	Zextra		Ø	Zsmile
	<u>G</u> ene	ral Linear I	Model	>	-,6	9045		,4
	Gene	rali <u>z</u> ed Line	ear Models	+	-2,6	5764		1,
	Mi <u>x</u> ed	Models		*	Linear			2,
	<u>C</u> orre	late		*		zed Lii	near	2,:
_	Regression			*				1,
	L <u>og</u> lir	near		>	-1,3	1370		,
	Neura	al Networks	3	-	-1,6	8277		1,







Output SPSS

In primo luogo riceviamo la definizione del modello dato in input

Model Dimensionb

		Number of Levels	Covariance Structure	Number of Parameters	Subject Variables
Fixed Effects	Intercept	1		1	
	beer	1		1	
Random Effects	Intercept + beerª	2	Unstructured	3	bar
Residual				1	
Total		4		6	

a. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your command syntax may yield results that differ from those produced by prior versions. If you are using version 11 syntax, please consult the current syntax reference guide for more information.

b. Dependent Variable: smile.

Corretto!

Output SPSS

Poi guarderemo la variabilità degli effetti random, per capire se è

abbiamo fatto bene a settarli come tali

Covariance Parameters

Estimates of Covariance Parametersa

						95% Confidence Interval	
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		1.258809	.125848	10.003	.000	1.034814	1.531292
Intercept + beer	UN (1,1)	9.334205	4.379192	2.131	.033	3.721616	23.411169
[subject = bar]	UN (2,1)	446262	.434661	-1.027	.305	-1.298181	.405657
	UN (2,2)	.034518	.053446	.646	.518	.001660	.717792

a. Dependent Variable: smile.

La varianza dei b non è diversa da zero, dunque i b variano molto poco, dunque potremmo tenere il modello precedente

Output SPSS

Guarderemo gli effetti fissi per valutare ed interpretare la relazione tra VD e VI

Estimates of Fixed Effectsa

						95% Confidence Interval	
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	5.373312	.850910	11.597	6.315	.000	3.512159	7.234465
beer	.641676	.092399	9.336	6.945	.000	.433796	.849555

a. Dependent Variable: smile.

Intercetta: In media, per zero birre ci attendiamo 5.37 sorrisi

Punti notevoli

- 1) Notiamo come in questo modello abbiamo tre stime relative alle varianze degli effetti random
 - 2) Notiamo che la varianza dei b non è significativa

Covariance Parameters

Estimates of Covariance Parametersa

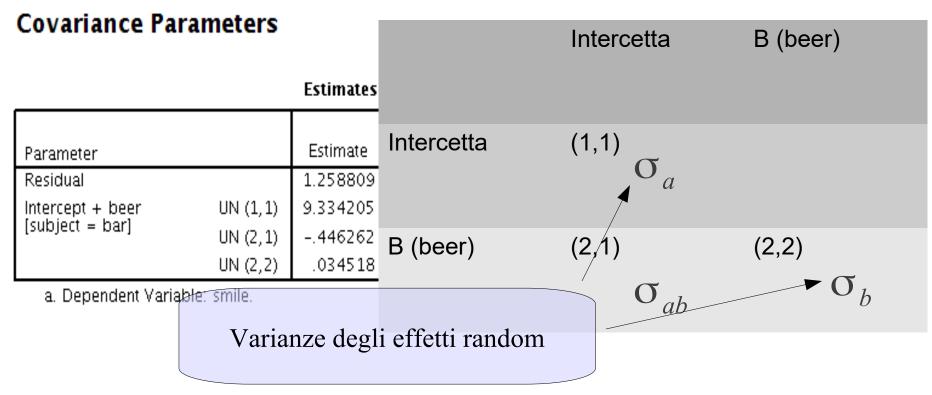
						95% Confidence Interval		
Parameter	ameter		Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound	
Residual		1.258809	.125848	10.003	.000	1.034814	1.531292	
Intercept + beer	UN (1,1)	9.334205	4.379192	2.131	.033	3.721616	23.411169	
[subject = bar]	UN (2,1)	446262	.434661	-1.027	.305	-1.298181	.405657	
	UN (2,2)	.034518	.053446	.646	.518	.001660	.717792	

a. Dependent Variable: smile.

Matrice di covarianza tra effetti random

1) Notiamo come in questo modello abbiamo tre stime relative alle

varianze degli effetti random



Matrice di covarianza tra effetti random

1) Notiamo come in questo modello abbiamo tre stime relative alle

varianze degli effetti random

Covariance Parameters				Intercetta	B (beer)	
		Estimates				
Parameter		Estimate	Intercetta	(1,1)		
Residual		1.258809		\mathbf{o}_a		
Intercept + beer	UN (1,1)	9.334205				
[subject = bar]	UN (2,1)	446262	⁵² B (beer)	(2,1)	(2,2)	
	UN (2,2)	.034518	<i>D</i> (<i>B</i> 001)	· ·		
a. Dependent Varia	a. Dependent Variable: smile.			σ_{ab}	σ_b	
Co	ovarianza t	ra a e b				

Varianze

La varianza degli effetti random ci indica quanta variabilità c'è tra i cluster nell'effetto

- Se non significativa, l'effetto random può essere tolto (con cautela, vedi oltre nel corso)
- Se è zero (esattamente), l'effetto random deve essere tolto dal modello

Covariance Parameters

Estimates of Covariance Parametersa

						95% Confidence Interval		
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound	
Residual		1.258809	.125848	10.003	.000	1.034814	1.531292	
Intercept + beer	UN (1,1)	9.334205	4.379192	2.131	.033	3.721616	23.411169	
[subject = bar]	UN (2,1)	446262	.434661	-1.027	.305	-1.298181	.405657	
	UN (2,2)	.034518	.053446	.646	.518	.001660	.717792	

a. Dependent Variable: smile.

Covarianze

La covarianza tra gli effetti random ci indica la relazione tra i coefficienti tra i cluster

Può essere interessante per capire i dati

Covariance Parameters

Estimates of Covariance Parametersa

						95% Confide	idence Interval	
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound	
Residual		1.258809	.125848	10.003	.000	1.034814	1.531292	
Intercept + beer	UN (1,1)	9.334205	4.379192	2.131	.033	3.721616	23.411169	
[subject = bar]	UN (2,1)	446262	.434661	-1.027	.305	-1.298181	.405657	
	UN (2,2)	.034518	.053446	.646	.518	.001660	.717792	

a. Dependent Variable: smile.

Morale

- Il modello misto consente di estendere il modello lineare generale a cui problemi di analisi dei dati in cui la struttura dei dati non si adatta naturalmente
- I semplici concetti visti oggi, combinati alle conoscenze relative al GLM, ci consentiranno di stimare modelli misti per (quasi) tutte i problemi di ricerca (plausibili)

Esempio di ANOVA con modello misto

- Una ricerca è volta a l'efficacia di due approcci terapeutici (che chiameremo approccio A e B) nel recupero di pazienti con diagnosi di disturbo di sostanze. I pazienti sono re-clutati in comunità di recupero differenti, ognuna gestita da un terapeuta appartenente ad uno dei due approcci (o A o B). I pazienti di una comunità condividono lo stesso terapeuta. In ogni comunità sono presenti sia pazienti con diagnosi di dipendenza da droghe pesanti che pazienti con abuso di alchol. Ad ogni paziente è stato somministrato un questionario che misura la resilienza (capacità di adattarsi a situazioni avverse) e l'outcome terapeutica, cioè una misura (continua) di miglioramente delle condizioni psicologiche del paziente.
- Lo scopo della ricerca è di studiare gli effetti dell'approccio terapeutico, della resilienza e del tipo di disturbo del soggetto sull'outcome della terapia.

Esempio di ANOVA con modello misto

I dati presentano le seguenti variabili:

- center : codice numerico della comunità a cui appartiene il paziente
- approach: approccio del terapeuta/comunità, con 0=A e 1=B
- diagnosis: diagnosi del paziente, con 0=abuso di sostanze e 1=abuso di alchol
- resilience: scala basata su questionario sulla resilienza

diagnosis

oute

sull'efficacia della terapia

		diagi	nosis	
		Drugs	Alchol	Total
center	1	4	6	10
	2	5	10	15
	3	9	7	16
	4	4	8	12
	5	9	5	14
	6	7	6	13
	7	9	10	19
	8	6	9	15
	9	10	7	17
	10	4	10	14
	11	7	6	13
	12	7	7	14
	13	7	6	13
	14	5	14	19
	15	8	8	16

Disegno di ricerca

Esempio per i primi 15 centri

Ogni centro ha tutti i tipi di diagnosi ma un solo tipo di approccio

Count

		diag	nosis	
		Drugs	Alchol	Total
center	1	4	6	10
	2	5	10	15
	3	9	7	16
	4	4	8	12
	5	9	5	14
	6	7	6	13
	7	9	10	19
	8	6	9	15
	9	10	7	17
	10	4	10	14
	11	7	6	13
	12	7	7	14
	13	7	6	13
	14	5	14	19
	15	8	8	16

Count

		appro	bach	
		Α	В	Total
center	1	10	0	10
	2	15	0	15
	3	16	0	16
	4	0	12	12
	5	0	14	14
	6	0	13	13
	7	19	0	19
	8	15	0	15
	9	17	0	17
	10	14	0	14
	11	0	13	13
	12	14	0	14
	13	0	13	13
	14	19	0	19
	15	0	16	16

annroach

Modello misto

Il disegno prevede una ANOVA 2X2 con effetti di approach, diagnosis e interazione

Count

		appro	oach	
		Α	Total	
diagnosis	Drugs	198	141	339
	Alchol	203	131	334
Total		401	272	673

Questi saranno gli effetti fissi

Modello misto

Il disegno prevede che i soggetti siano raggruppati in clusters (gruppi), che sono i **center**

- Ogni center può avere una media di outcome diversa: intercetta può variare da centro a centro: intercetta random
- Ogni center ha tutte e due le diagnosi: ogni centro può mostrare un effetto diverso di diagnosi: effetto di diagnosi random
- Ogni center non ha i due approcci: nussun effetto random di approach

Questi saranno gli random

Modello misto

Definiamo un modello dove le intercette e gli effetti possono variare da centro

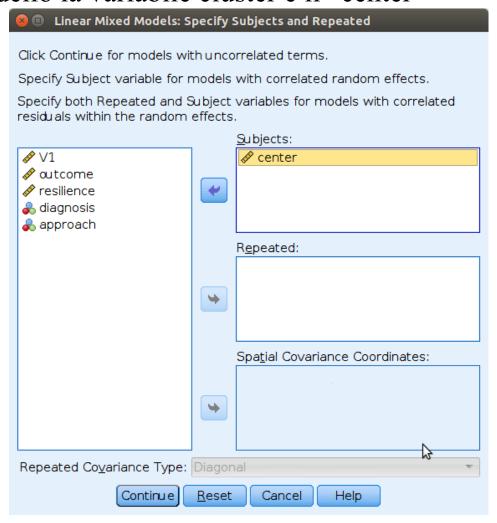
- Quali sono gli effetti fissi? Intercetta, approach, diagnosis e interazione
- Quali sono gli effetti random? Intercetta e diagnosis
- Quali sono i cluster su cui variano gli effetti random? center

ANOVA con modello misto

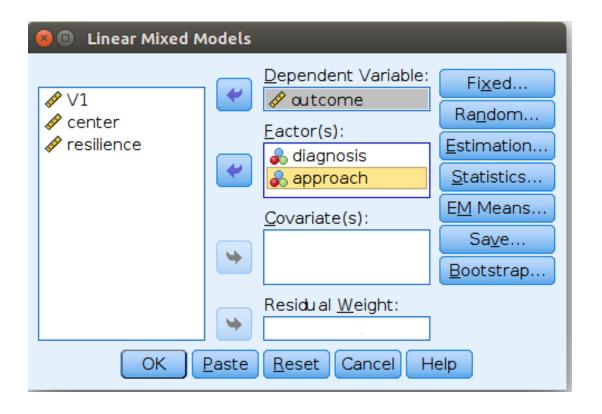
SPSS Statistics Data Editor

	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp			
	Reports			F	*			5	
	D <u>e</u> sci	riptive Stati	stics)					
	Ta <u>b</u> les Co <u>m</u> pare Means			-					
				.			ø	Zsmile	
	<u>G</u> ene	<u>G</u> eneral Linear Model Generali <u>z</u> ed Linear Models			-,6	9045		,,	
	Gene				-2,6	5764		1,	
	Mi <u>x</u> ed	Models		*	Linear			2,	
	<u>C</u> orrelate <u>R</u> egression			.	<u> </u>	zed Lir	Linear 2		
				*				1,	
	L <u>og</u> lir	Loglinear		>	-1,3	1370		,	
	Neura	al Networks	3	>	-1,6	8277		1,	

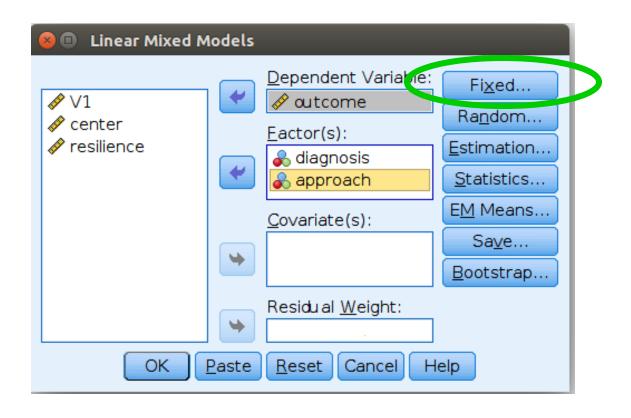
Definiamo un modello la variabile cluster è il "center"



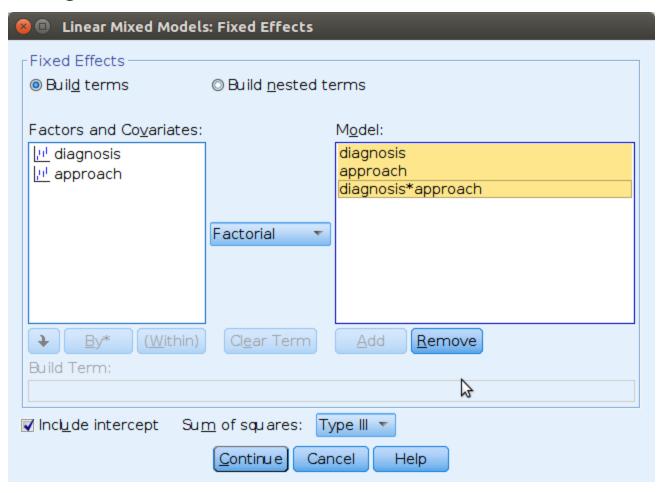
Definiamo le variabili come in una ANOVA



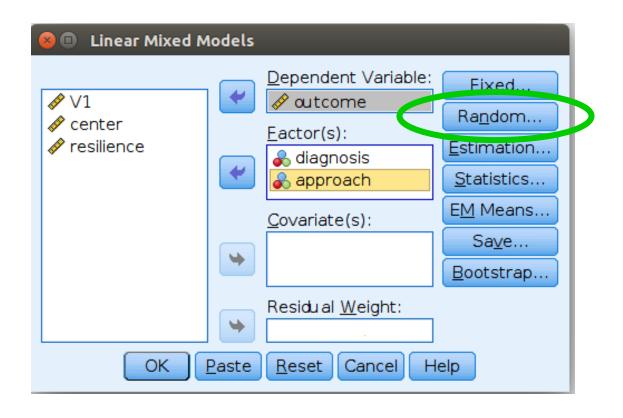
Definiamo le variabili come in una ANOVA



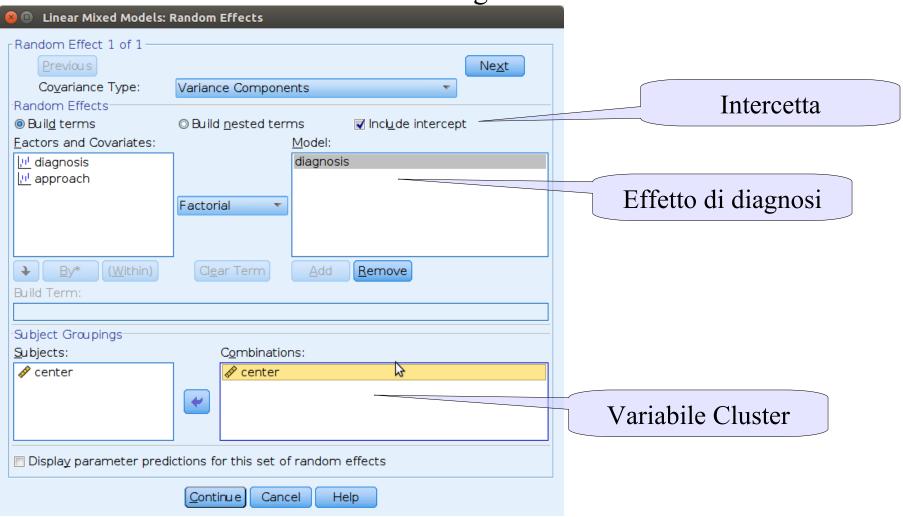
Definiamo gli effetti fissi



Definiamo le variabili come in una ANOVA



Definiamo intercetta e effetto di diagnosi come random



Risultati, prima guardiamo se il modello è ok, con varianze degli effetti random diverse da zero

Covariance Parameters

Estimates of Covariance Parameters^a

Parameter		Estimate	Std. Error
Residual		17.618961	1.032600
Intercept [subject = center]	Variance	7.624187	2.031591
diagnosis [subject = center]	Variance	.913141	.760465

a. Dependent Variable: outcome.

OK, sono tutte maggiori di 0

Risultati, guardiamo gli effetti come se fosse una ANOVA normale

Fixed Effects

Type III Tests of Fixed Effects^a

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	43.467	856.610	.000
diagnosis	1	41.097	32.301	.000
approach	1	43.467	11.108	.002
diagnosis * approach	1	41.097	25.918	.000

a. Dependent Variable: outcome.

Covariance Parameters

Una interazione

Due effetti

principali

Risultati, guardiamo le medie

diagnosis * approach^a

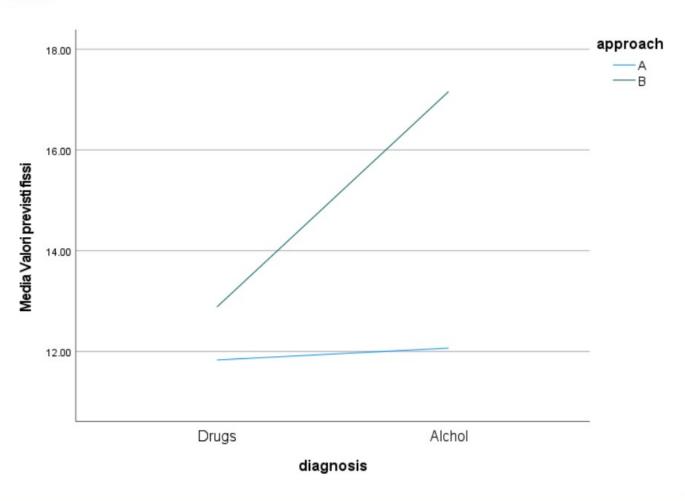
Double-click to activate

					95% Confidence Interval		
diagnosis	approach	Mean	Std. Error	df	Lower Bound	Upper Bound	
Drugs	Α	11.833	.650	57.949	10.531	13.136	
	В	12.889	.762	58.448	11.363	14.415	
Alchol	Α	12.068	.648	57.235	10.770	13.366	
	В	17.156	.767	59.985	15.622	18.689	

a. Dependent Variable: outcome

B è migliore di A, soprattutto per chi ha problemi di alchol

Risultati, guardiamo le medie



Morale

- Il modello misto consente di estendere il modello lineare generale a cui problemi di analisi dei dati in cui la struttura dei dati non si adatta naturalmente
- I semplici concetti visti oggi, combinati alle conoscenze relative al GLM, ci consentono di stimare Regressioni o ANOVA anche quando i dati sono raggruppati in cluster di soggetti non indipendenti