Graph Theory >/
7& and Algorithms

Ph.D. Course — Marco Viviani

raph Compression and Summarization
(April 29, 2021 /15:00-17:00)

TABLE OF CONTENTS

SCENARIO 3 GRAPH SUMMARIZATION
= Intro, Basic Notions, and » Intro and Taxonomy of
Open Issues Approaches
GRAPH COMPRESSION 4 APPROACHES
» Intro and Some » Graph Summarization

Compression Models

1

e

From: Graph Compression — Data compression

(Lecture 5)
Graph sizes in 2018
Graph VI IEl (symmetrized)
com-Orkut 3M 234M Publicly available graphs
Private graphs
Twitter 41M 1.46B
Friendster 124M 3.61B
Hyperlink2012-Host 101M 2.04B
Facebook (2011) [1] 721M 68.4B
Hyperlink2014 [2] 1.7B 1248
Hyperlink2012 [2] 3.5B 225B
Facebook (2018) > 2B > 300B
Google (2018) ? ?

[1] The Anatomy of the Facebook Social Graph, Ugander et al. 2011
Graph Theory and Algarithms (PhD Course) — Marco Viviani [2] http://webdatacommons.org/hyperlinkgraph/

http://webdatacommons.org/hyperlinkgraph/
https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesS18/compression6.pdf

From: Graph Compression — Data compression

(Lecture b)

Graph compression in industry

NetflixGraph Metadata Library: An
Optimization Case Study

by Drew Koszewnik
Problem: running into memory issues when storing the movie
property graph in memory
Solution: Compact Encoded Data Representation
We knew that we could hold the same data in a more memory-efficient way.
We created a library to represent directed-graph data, which we could then

overlay with the specific schema we needed.

Results

When we dropped this new data structure in the existing NetflixGraph library,

our memory footprint was reduced by 90%| A histogram of our test

application from above, loading the exact same set of data, now looks like the

. Source: Netflix Tech Blog
following:

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://netflixtechblog.com/netflixgraph-metadata-library-an-optimization-case-study-6cc7d5eb2946
https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesS18/compression6.pdf

From: Graph Compression — Data compression

(Lecture b)

Graph compression in industry

Compressing Graphs and Indexes with
Recursive Graph Bisection

Abstract

Graph reordering is a powerful technique to increase the locality of the
representations of graphs, which can be helpful in several applications. We study how
the technique can be used to improve compression of graphs and inverted indexes.

Our experiments show a significant improvement of the compression rate of graph
and indexes over existing heuristics. The new method is relatively simple and allows
efficient parallel and distributed implementations, which is demonstrated on graphs

with billions of vertices and hundreds of billions of edges.
Source: Facebook Research

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://research.fb.com/publications/compressing-graphs-and-indexes-with-recursive-graph-bisection/
https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesS18/compression6.pdf

From: Graph Compression — Data compression

(Lecture b)

Operations on Graphs

« Static graphs:
- Scanning the whole graph (i.e.,, the storage cost),
- get neighbors (v) (infout neighbors for digraphs),
« 1s_edge (u,v) (isthe (u,v) edge presentin G?).

« Dynamic graphs:
- Insert/delete nodes/edges.

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesS18/compression6.pdf

From: Compressed Sparse Row Format for
Representing Graphs

Graph Representations

- Edge List

VO JdJWWWMNDNDD
N JIJOH OOONKR

(a) example graph (b) edge list

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://www.usenix.org/system/files/login/articles/login_winter20_16_kelly.pdf

From: Compressed Sparse Row Format for
Representing Graphs

Graph Representations ... Cont'd

« Adjacency Matrix
- Vertices labeled from 0ton — 1.
- Entry of “1” if edge exists, “0” o.w. (or the
weight on the edge).

123456789

1
2|1 1 1
31 11
4
5
6
7] 1 1
8 1
(a) example graph 7

(c) adjacency matrix
Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://www.usenix.org/system/files/login/articles/login_winter20_16_kelly.pdf

From: Compressed Sparse Row Format for
Representing Graphs

Graph Representations ... Cont'd

« Adjacency List
- Array of pointers (one per vertex).
- Each vertex points to a list of its neighbors.

- eE T
G—]
Bamait

7
4] | (alloc?ltm;l
overhea
\ED not shown)

(d) adjacency lists

PIS

Neolie IR e WU BE SRS S

(a) example graph

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://www.usenix.org/system/files/login/articles/login_winter20_16_kelly.pdf

From: Compressed Sparse Row Format for
Representing Graphs

Graph Representations ... Cont'd

(a) example graph

Graph Theory and Algorithms (PhD Course) — Marco Viviani

« Adjacency Vectors
- An array indexed by “from” vertexID contains
entry points to <vector>s of “to” vertex|Ds.

oo W -

G/
G-

_-11j6l8] | | | | |

PR

o m mm mm m— — — = = —— -

<vector>

M - - - _— - - —_—— - -

(e) adjacency vectors

https://www.usenix.org/system/files/login/articles/login_winter20_16_kelly.pdf

From: Graph Compression — Data compression

Computational Costs — Time

Operation

scan_graph

get_neighbors

is_edge

insert edge

delete edge

Graph Theory and Algorithms (PhD Course) — Marco Viviani

Adjacency Matrix

Edge List

Adjacency List

O(m +n)
O(n) O(m) O(d)
O(1) O(m) O(d)
0(1) O(1) | O(1)erO(d)
O(1) O(m) O(d)

(Lecture b)

https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesS18/compression6.pdf

From: Graph Compression — Data compression

(Lecture b)

Computational Costs — Space

Hyperlink2012 Graph
* n=3.6B, m = 225B (undirected edges)

* Vertex ids fit into 4 bytes

« > 900Gb to store in CSR format _ We are going to

detail it later

32Gb DRAM: about 300%*

So, about 9000$ of memory just to store the graph.
Doesn’t include memory needed to run algorithms on it!

*Source: Hynix HMA84GR7MFR4N-UH 32GB DDR4-2400 ECC REG DIMM Server Memory

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesS18/compression6.pdf

Compression VS Summarization

« Graph compression applies various encoding techniques so that the
resultant graph needs lesser storage space.

« Graph summarization aggregates nodes having similar structural

properties/patterns to represent a graph with reduced main memory
requirements.

Seo, H., Park, K., Han, Y., Kim, H., Umair, M., Khan, K. U., & Lee, Y. K.
(2018). An effective graph summarization and compression technique
Graph Theory and Algorithms (PhD Course) — Marco Viviani for a large-scaled graph. The Journal of Supercomputing, 1-15

2

Graph
Compression

Intro and Some
Compression Models

Graph Compression

« Aim: storage-efficient processing of large graphs
- This is becoming increasingly important w.r.t. Big Data Analysis

« Many different areas of application:
- Web graphs
- Biology networks
- Social graphs

* Many of these approaches originated in the area of data
compression and high-performance scientific computing.

Graph Theory and Algorithms (PhD Course) — Marco Viviani

The Compressed Sparse Row (CSR)
Representation

« The Compressed Sparse Row (CSR) Representation originated in
high-performance scientific computing as a way to represent sparse
matrices, whose rows contain mostly zeros.

* “Old” representation
- Appeared in the mid-60.

* The basic idea is to pack the column indices of non-zero entries into a
dense array > How?

Graph Theory and Algorithms (PhD Course) — Marco Viviani

The Compressed Sparse Row (CSR)
Representation ... Cont'd

Advantage:

« CSR is more compact and is laid out more contiguously in memory
than adjacency lists and adjacency <vector>s, eliminating nearly all
space overheads and reducing random memory accesses compared
with these other formats.

Disdvantage:
« The price we pay for CSR's advantages is reduced flexibility: adding

new edges to a graph in CSR format is inefficient, so CSR is suitable
for graphs whose structure is fixed and given all at once.

Graph Theory and Algorithms (PhD Course) — Marco Viviani From: Compressed Sparse Row Format for Representing Graphs

https://www.usenix.org/system/files/login/articles/login_winter20_16_kelly.pdf

The Compressed Sparse Row (CSR)
Representation ... Cont'd

« The Compressed Sparse Row represents an mxn matrix M by three
(one-dimensional) arrays, that respectively contain non-zero values,
the row pointers, and column indices.

* The arrays V and Cj, 40, are of length nnz, and contain the non-zero
values and the column indices of those values respectively.

- nnz denotes the number of nonzero entries in M.

* The array Rj,4ex €Ncodes the index in V and Cj,40 Where the given
row starts. Its length ism + 1.

Graph Theory and Algorithms (PhD Course) — Marco Viviani

The Compressed Sparse Row (CSR)
Representation ... Cont'd

* The R},40, VEctor stores the cumulative number of non-zero
elements upto (nhot including) the i-th row.

* It is defined by the recursive relation:
* Ringex[0] = 0.
* Rindex|i] = Ringex|i — 1] + Nnumber of non-zero elements in the (i — 1)th row of
the matrix.

* To find the number of non-zero elements in say row i, we perform:
* Rindex [i + 1] — Rindex [l]

Graph Theory and Algorithms (PhD Course) — Marco Viviani

The Compressed Sparse Row (CSR)
Representation — Example 1

For example, the matrix

| O | 00| O
o | w | o | o
o | O | o | o

0
5
0
0

isa 4 x4 matrix with 4 nonzero elements, hence:

e V = (5834
° Clndexz(o 121)

 What about the Ry 4ex?

Graph Theory and Algorithms (PhD Course) — Marco Viviani

The Compressed Sparse Row (CSR)
Representation — Example 1 ... Cont'd

For example, the matrix

Ringex[0] =0

Rindex[1] = Ringex[0] +

Rindex[2] = Ringex[1] +

Rlndex[g] - Rlndex[z] +
* Rindgex[4] = Ringex[3] +

» Therefore, Rigex

I
~
o

Graph Theory and Algorithms (PhD Course) — Marco Viviani

| O | 00| O
o | w | o | o
o | O | o | o

0
5
0
0

1=3
1=4
0234)

The Compressed Sparse Row (CSR)
Representation — Example 1 ... Cont'd

For example, the matrix

| O | 00| O
o | w | o | o
o | o | o | o

0
5
0
0

has the following CSR representation:

e V = 5834
* Cindgex = (01 2 1)
* Ripgex =(0 0 2 3 4)

Graph Theory and Algorithms (PhD Course) — Marco Viviani

The Compressed Sparse Row (CSR)
Representation — Example 2

75 29 28 27 0O
(t’a.ﬂ 5.7 38 0 0
24 6.2 32 0 0
97 0 0 23 0

A=

rowptr: (0 4 7 10 12 14 16)
colind: (O 1 2 3 0 1 2 0 1 2 0 3 4 5 4 5)

val: (75 29 28 27 68 57 3.8 24 6.2 32 9.7 23 58 50 6.6 8.1)

Elafrou, A., Goumas, G., & Koziris, N. (2015). A lightweight optimization selection
Graph Theory and Algorithms (PhD Course) — Marco Viviani method for Sparse Matrix-Vector Multiplication. arXiv preprint arXiv:1511.02494

The Compressed Sparse Row (CSR)
Representation — Exercise

Given the following matrix o 2/ 0 o0o0/1 0
0 8 0 0 0 0
2 0 3 0 1 1
0 0 0 0 0 0

has the following CSR representation:

o V| =7 V =?
* |Crngex| =7 Crndex =
* |Rmdex| =7? Ringex =7

Graph Theory and Algorithms (PhD Course) — Marco Viviani

o O | N | O

o | o | o | o

The Compressed Sparse Column (CSC)
Representation

« Compressed Sparse Column (CSC) is similar to CSR except that:
- values are read first by column,
- arow index is stored for each value,
- column pointers are stored.

Graph Theory and Algorithms (PhD Course) — Marco Viviani

From: Graph Compression — Data compression

(Lecture b)

Computational Costs — Time

Operation Adjacency Matrix Edge List Adjacency List CSR/CSC

scan_graph

get_neighbors

is_edge

insert edge

delete edge

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesS18/compression6.pdf

From: arXiv preprint arXiv:1806.01799

Variable-Length Encoding

* In variable-length encoding, vertex |IDs stored in the adjacency array
are encoded with one of the selected variable-length codes*, such as
variable length integer (varint) coding - details

A part of an adjacency array before and after variable-length encoding An example of Varint usage:

The space for each number

is proportional to its value "1" says there

"21" in binary use Varint F 2 ETE R

5 21 22 - 189 === 52122 --189 2190101010101 1010

| /[\ "0" says it is the last part

Apply Varint Apply Varint Apply Varint

*In coding theory, a variable-length code is a code which maps source
symbols to a variable number of bits.

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://golb.hplar.ch/2019/06/variable-length-int-java.html
https://arxiv.org/pdf/1806.01799

From: arXiv preprint arXiv:1806.01799

Huffman Degree Encoding

* The core idea in the Huffman degree encoding scheme is to use

fewer bits to encode vertex |IDs of higher degrees.
- Vertex IDs that occur more often use fewer bits = saving space.

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://arxiv.org/pdf/1806.01799

From: Huffman Encoding and Data Compression
Further info: Huffman Coding

Huffman Degree Encoding ... Cont'd

standard ASCII table.
char ASCII bit pattern (binary)
h 104 01101000
a 97 01100001
p 112 01110000
y 121 01111001
i 105 01101001
) 111 01101111
space 32 00100000

The string "happy hip hop" would be encoded in ASCII as 104 97 112 112 121 32 104 105
112 32104 111 112. Although not easily readable by humans, it would be written as the following
stream of bits (each byte is boxed to show the boundaries):

01101000

01100001

01110000

01110000

01111001

00100000

01101000 |

01101001

01110000

00100000

01101000

01101111

01110000

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/handouts/220%20Huffman%20Encoding.pdf
http://people.ucalgary.ca/~dfeder/449/Huffman.pdf

From: Huffman Encoding and Data Compression
Further info: Huffman Coding

Huffman Degree Encoding ... Cont'd

optimal Huffman encoding for the string "happy hip hop":

char bit pattern

01
000
10
1111
001
1110
space 110

O "o o

Each character has a unique bit pattern encoding, but not all characters use the same number of bits.
The string "happy hip hop" encoded using the above variable-length code table is:

l01{ooo{10[10]1111]110]01 [001 [10(|110[01[1110[10 |

The encoded phrase requires a total of 34 bits, shaving a few more bits from the fixed-length version.

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/handouts/220%20Huffman%20Encoding.pdf
http://people.ucalgary.ca/~dfeder/449/Huffman.pdf

From: arXiv preprint arXiv:1806.01799

Vertex Relabeling

* In vertex relabeling, the main idea is to change the initial IDs of
vertices so that the new IDs, when stored, use less space. We also use
the name vertex permutations to refer to this technique.

* This scheme is usually combined with variable-length encoding.

Relabeling combined with variable-length encoding reduces required storage

5 21 22 189 =) 13 4 - 11
N7 \

Variable-length encoding enables total size New labels are usually
proportional to the size of vertex labels smaller than old ones

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://arxiv.org/pdf/1806.01799

From: arXiv preprint arXiv:1806.01799

Reference Encoding

* In reference encoding, identical sequences of vertices in the
adjacency arrays of different vertices are identified.

* Then, all such sequences (except for a selected one) are encoded with
references.

The results of applying

Two almeost identical
reference encoding

adjacency arrays

1 3 4 7 811 1 3 4 7 8 11
— t
2 3 4 7 8 11 2 Pr— , inter

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://arxiv.org/pdf/1806.01799

From: arXiv preprint arXiv:1806.01799

Gap Encoding

* The gap encoding scheme preserves differences between vertex IDs
rather than the IDs themselves.
- The motivation is that, in most cases, differences occupy less space than IDs.

« Several variants can be used:

- The most popular is storing differences between the |IDs of the consecutive

neighbors of each vertex v, for example:
N1 (v) —v,N,(v) = Ny (v), ..., Ng,,-1 (v) — Ng,,—»(v), Ng,(v) — Ng,—1(v)

(the first of the above differences is sometimes called an initial distance and
each following: an increment).

- Another variant stores the differences between v and each of its neighbors:

Ny(v) —v,N,(v) —v,..,Ng,_1(v) —v,Ngq,(v) —v

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://arxiv.org/pdf/1806.01799

Gap Encoding ... Cont'd

« Original representation:

1 > 3 5 8 44 88 120

« Gap encoding:

1 > 2 2 3 36 44 32

Graph Theory and Algorithms (PhD Course) — Marco Viviani

From: arXiv preprint arXiv:1806.01799

Re-Pair (Claude and Navarro, 2007)

In the context of Web Graph compression, the authors propose a
text-based approach for graph compression.

A phrase-based compression scheme that enables fast

decompression that is also local:
|t does not always require accessing the whole graph.

Re-Pair repeatedly finds the most frequent pairs of symbols in a
given graph representation and replaces them with new symbols.

This is repeated as long as storage is reduced.

Claude, F., & Navarro, G. (2007, October). A fast and compact Web graph representation. In International
Graph Theory and Algorithms (PhD Course) — Marco Viviani Symposium on String Processing and Information Retrieval (pp. 118-129). Springer, Berlin, Heidelberg

https://arxiv.org/pdf/1806.01799

From: arXiv preprint arXiv:1806.01799

Re-Pair (Claude and Navarro, 2007) ... Cont’

Adjacency arrays:

Adjacency arrays: Adjacency arrays:
i-:apa@® 3 1-@BY 3
= f2-nzler o
A i
g I @ 12

8 11->Y

Vertices:

3 X =7 .
4-zm

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://arxiv.org/pdf/1806.01799

From: arXiv preprint arXiv:1806.01799

k* Trees (Brisaboa et al., 2014)

A graph representation model where a graph is modeled with a tree.

Initially, the graph is divided into k? submatrices of identical size (k is a
parameter); these submatrices are recursively divided in the same way.

Now, the key idea is to represent the graph as a k?-ary tree (called a k?
tree) that corresponds to the above recursive “partitioning” of the graph.

At every partitioning level, if a given submatrix to be partitioned contains
only Os, the corresponding tree node contains 0. Otherwise, it contains a 1.

Brisaboa, N. R, Ladra, S., & Navarro, G. (2014). Compact representation of

Graph Theory and Algorithms (PhD Course) — Marco Viviani Web graphs with extended functionality. Information Systems, 39, 152-174

https://arxiv.org/pdf/1806.01799

From: arXiv preprint arXiv:1806.01799

k* Trees (Brisaboa et al., 2014) ...

Cont'd

2, using two

partitoning levels (more levels could

compress the matrix better; we use

Partition the matrix for k

An adjacency matrix of some graph:

The second

partitioning:

submatrices

are further
divided.

[eNoNoNo] 0111“1011 —A— O
COO00 0000 0000 HOOH
OococoiocoHo oo-HO|00COH
O0o0O0lo00O0, 0000|000

codHlodH10I0O100 | 00O
OHoOHOO dHoolo-o-
coocoldHHO , 0c0oHH|OOOO
oo oo 0110“0010 coocod

\ cCooco0o0O0O00c 0000|000
OO0 O, HHOH OHO
OCooo0o0o0o0O idddloocoH
OCoooooooloHdooloooo

The first partitioning
of the initial matrix
into four submatrices

OO0OO0OO0O0O0O0O!
OCO0OO0O0O0O0O0O 5o
cocoococoocooo!

two for simplicity of the example)

[eNeNoNoNoNoNoNel

OO0 0O O 1O A A A H O
COO0O0O Q00000000100
CO0OO0O0OO0O0O100O0HOOO O
OCOO0OO0ODO0OO0O0OO0OO0O0OOCOO0O
OO0 101100100000
OO0 01001000 O
COO0CO0O1-HHOOO-1H0OOOO
COO0CO0O 0O A0 00O0 1000 O
ejlelolleojojolelojejolololoelalielly
OO0 0000000 HOH0OHO -
COO0O0OO0O0OO0COrHddAd0 OO0
COO0OO0OO0CO0O0O0O0OOHOOOOOO
COO0OO0OO0O0O0C0O0O0O0O0OH00 0O
elleeolejojololojojol N jeolele}le)
COO0O QOO0 O0OQOCO0OOHOOOOO
CO0O0OO0O0DO0DO0O0O0OO0O0DO0OOO0O0O00O0o

oo HdjO0OO0O0O0O

o0 OO0 00
I 0O000| 0000

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://arxiv.org/pdf/1806.01799

From: arXiv preprint arXiv:1806.01799

k* Trees (Brisaboa et al., 2014) ... Cont'd

The second
partitioning:

submatrices

upn

A bit "1" indicating
with values

that the corresponding
submatrix has some cells

/

1

OO~

O~
ocooo
oco-HO
coooo

ocoOoOm™
O-Om™
ocoocoo
ocoo-

o~<OO

O
ococoo
oco~=0O
cooo
OO
o-dOoO
-0
OO
(==
oOHHO
oooo
cocoo
O
oo
M coco-

Generate the corresponding
output tree, encoded with
any space-efficient scheme

A bit "0" indicating
that the corresponding

submatrix has only cells
with values "0
0
00 1110 0010 0 0
10 0100 0000 i
Bl DmEe o 0

are further
divided
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

coococococoo:
ocoocococooo0,
Oo0ooco0o00O0O0O,
OC0O0O0O0O0O0O0'OHOO 0000

I

1

I

1

AN

Oocococoooo
(eejojejolelolo]
(elejleojojelejele)
oOooococoococoo!

The first partitioning
of the initial matrix
into four submatrices

Graph Theory and Algorithms (PhD Course) — Marco Viviani

https://arxiv.org/pdf/1806.01799

