
Dynamic program analysis and
Mining of software

specifications
Pietro Braione

pietro.braione@unimib.it
(course material by Leonardo Mariani)

mailto:pietro.braione@unimib.it

Static vs dynamic program
analysis

Static vs dynamic analysis

• Static analysis: Examine program source code
• Examine the complete execution space
• But may lead to false alarms

• Dynamic analysis: Examine program execution traces
• No infeasible path problem
• But cannot examine the execution space exhaustivelyPowerManager::PowerManager(IMsgSender* msgSender)

: msgSender_(msgSender) { }

void PowerManager::SignalShutdown()
{

msgSender_->sendMsg("shutdown()");
}

Example: Rule-based static analysis

RULES
** correctness rules **

…

** stylistic rules **
…

STATIC ANALYSIS
TOOL

ALARMS
** violations of correctness rules**

…

** violations of stylistic rules **
…

In some domains the code must comply to a standard set of rules
e.g., MISRA in the automotive domain

Program
(source)

Rule-based static analysis: Some tools

• Java:
• PMD
• Checkstyle
• Android Lint

• C/C++
• Cppcheck
• clang-tidy
• vera++
• Google cpplint

Dynamic analysis

Program

execute
observe

Easy to execute but
hard to find cases:
- Memory Leak
- Data races
…

Do you see any fault?

void f(void) {
int* x = malloc(10 * sizeof(int));
x[10] = 0;

}

Heap block overrun
- sporadic failures

Memory leak
- Slow down and crashes in long
running executions

Dynamic memory analysis
Unallocated

(unwritable and unreadable)allocate

Allocated and uninitialized
(writable, but unreadable)

Allocated and initialized
(readable and writable)deallocate

deallocate

initialize

• Instrument program to trace memory access

• At runtime:
• record the state of each memory location
• detect accesses incompatible with the current state

• attempts to access unallocated memory
• read from uninitialized memory locations

• array bounds violations:
• add memory locations with state unallocated before and after each array
• attempts to access these locations are detected immediately

Data race
#include <thread>
#include <iostream>
#include <vector>

unsigned const increment_count = 2000000;
unsigned const thread_count = 2;

unsigned i = 0;

void func() {
for (unsigned c = 0; c < increment_count; ++c) {

++i;
}

}

int main() {
std::vector<std::thread> threads;
for (unsigned c = 0; c < thread_count; ++c) {

threads.push_back(std::thread(func));
}
for (unsigned c = 0; c < threads.size(); ++c) {

threads[c].join();
}

std::cout << thread_count << " threads, final i=” << i;
std::cout << ", increments=" << (thread_count * increment_count);
std::cout << std::endl;

}

What is the output of this program?

2 threads, final i=2976075, increments=4000000
2 threads, final i=3097899, increments=4000000
2 threads, final i=4000000, increments=4000000
2 threads, final i=3441342, increments=4000000
2 threads, final i=2942251, increments=4000000

Dynamic lockset analysis

• Lockset discipline: set of rules to prevent data races
• Easiest discipline: Every variable shared between threads must be protected by a

mutual exclusion lock
• Dynamic lockset analysis detects violation of the locking discipline

• Identify set of mutual exclusion locks held by threads when accessing each shared variable
• INIT: each shared variable is associated with all available locks
• RUN: when a thread accesses a shared variable, intersect current set of candidate locks with

locks held by the thread
• END: set of locks after executing a test = set of locks always held by threads accessing that

variable; empty set for v = no lock consistently protects v

Dynamic lockset analysis: Example

Thread Statement Lock held by thread Lockset of x
{lck1, lck2} INIT: all locks

Dynamic lockset analysis: Example

Thread Statement Lock held by thread Lockset of x
{lck1, lck2} INIT: all locks

A lock(lck1); {lck1} lck1 held

Dynamic lockset analysis: Example

Thread Statement Lock held by thread Lockset of x
{lck1, lck2} INIT: all locks

A lock(lck1); {lck1} lck1 held
x = 1; {lck1} Intersect w/lock held

Dynamic lockset analysis: Example

Thread Statement Lock held by thread Lockset of x
{lck1, lck2} INIT: all locks

A lock(lck1); {lck1} lck1 held
x = 1; {lck1} Intersect w/lock held

release(lck1); {} lck1 released

Dynamic lockset analysis: Example

Thread Statement Lock held by thread Lockset of x
{lck1, lck2} INIT: all locks

A lock(lck1); {lck1} lck1 held
x = 1; {lck1} Intersect w/lock held

release(lck1); {} lck1 released
B lock(lck2); {lck2} lck2 held

Dynamic lockset analysis: Example

Thread Statement Lock held by thread Lockset of x
{lck1, lck2} INIT: all locks

A lock(lck1); {lck1} lck1 held
x = 1; {lck1} Intersect w/lock held

release(lck1); {} lck1 released
B lock(lck2); {lck2} lck2 held

x = 2; {} Intersect w/lock held

Dynamic lockset analysis: Example

Thread Statement Lock held by thread Lockset of x
{lck1, lck2} INIT: all locks

A lock(lck1); {lck1} lck1 held
x = 1; {lck1} Intersect w/lock held

release(lck1); {} lck1 released
B lock(lck2); {lck2} lck2 held

x = 2; {} Intersect w/lock held
release(lck2);

Dynamic lockset analysis: Example

Thread Statement Lock held by thread Lockset of x
{lck1, lck2} INIT: all locks

A lock(lck1); {lck1} lck1 held
x = 1; {lck1} Intersect w/lock held

release(lck1); {} lck1 released
B lock(lck2); {lck2} lck2 held

x = 2; {} Intersect w/lock held
release(lck2);

Empty lockset, potential race

Some tools

• Dynamic memory analysis:
• Valgrind Memcheck
• Google AddressSanitizer, LeakSanitizer, MemorySanitizer
• Dmalloc
• UNICOM (was Rational) PurifyPlus [commercial]
• MicroFocus BoundsChecker [commercial]
• Parasoft Insure++ [commercial]

• Dynamic thread analysis:
• Valgrind Helgrind and DRD
• Google ThreadSanitizer
• Intel Inspector [commercial]

Take home

Program
(compiled)

Program
(source)

executebuild &
compile

Dynamic
Analysis

Static
Analysis

observe

A
N

A
LY

SI
S

TE
ST

IN
G

Program
(compiled)

input output
expected

output

Mining of software specifications:
An introduction

Analysis of Software Behaviors

Revealing, Analyzing, and
Detecting Software Failures

(semi-)automatically, when
no specification is available

Specification Mining =
Learn specifications from

actual executions

mine values that
can be assigned

to variable X
from actual

samples

X=-2
X=-9
X=0
X=5
X=7
…

Actual Behavior
-10<X<10

Specification mining

Mined Behavior
-10<X<10

Specification mining is imprecise

Over-Generalization Under-Generalization Over- and Under-
Generalization

Specification mining is hard

the implementation

the samples

What we would like to
do: derive the spec from
the samples

What we do: derive an
approximated spec from
the samples

mined spec
the spec

Models used as specifications

Real Specification
-10<X<10

Mined Specification
-100<X<5

X = 100
Correctly rejected

behavior

X = 1
Correctly accepted

behavior

X = 7
Erroneously rejected

behavior

X = -50
Erroneously accepted

behavior

Gap

We need to address this
gap when using the
models

Models mined from
samples produced by the

actual implementation

Intended
behavior

VS

Model types

1 2

a

3

c

4 5

d f

eb x > 0

Events, total order Data

CombinedEvents, partial order

open => close

Models of events, total order

construction
mechanism

…

properties of
the result

inference inference

Procedural Declarativevs.

Procedural approaches

• Trace-based mining
• State-based merging
• Behavior-based merging

• State-based mining

k-Tail TRACES

FSA

[Biermann and Feldman. On the synthesis of
finite state machines from samples of their
behavior. IEEE ToC, 1972]

a a a b c

a b c

a a b c

a a a a a c

The Prefix Tree Acceptor (PTA)

PTA

TRACES
a a a b c

a b c

a a b c

a a a a a c

From the PTA to the FSA

2-future(2) = {aa,ab,bc}
2-future(5) = {aa, bc}
2-future(11) = {}
2-future(8) = {c}
…

k = 2 => 2-FUTURES

From the PTA to the FSA

2-future(8) = {c} = 2-future(12)

From the PTA to the FSA

2-future(8) = {c} = 2-future(12)

From the PTA to the FSA

2-future(11) = {} = 2-future(13)

From the PTA to the FSA

2-future(11) = {} = 2-future(13)

From the PTA to the FSA

2-future(2) = {aa, ab, bc} = 2-future(3)

From the PTA to the FSA

2-future(2) = {aa, ab, bc} = 2-future(3)

From the PTA to the FSA

…

From the PTA to the FSA

FSA

k-Tail: Features

• The FSA accepts all the traces used for inference
• But it also generalizes them (in the example the FSA accepts an

infinite number of traces)
• The parameter k controls the degree of generalization:

• High k = under-generalization
• Low k = over-generalization

ope
nFi
le read write

read write

openFile read
write closeFile

read write

clo
seC

onnconnDB

closeFile

K=2

K=3

connDB clo
seC

onn

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout
login home checkMsgwatchVideo home checkMsg logout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout
login home checkMsgwatchVideo home checkMsg logout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout
login home checkMsgwatchVideo home checkMsg logout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout
login home checkMsgwatchVideo home checkMsg logout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout
login home checkMsgwatchVideo home checkMsg logout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout
login home checkMsgwatchVideo home checkMsg logout

k = min length of
matched behavior

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout
login home checkMsgwatchVideo home checkMsg logout

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout
login home checkMsgwatchVideo home checkMsg logout

login home checkMsg read home checkMsg logoutreply

kBehavior

[Mariani, Pastore, Pezzè. Dynamic Analysis for
Diagnosing Integration Faults. TSE, 2011.]

login home checkMsg logout

login home checkMsg timeout
login home checkMsgwatchVideo home checkMsg logout

login home checkMsg read home checkMsg logoutreply

kBehavior: Features

• Empirically, behavior-based merging generates models that are more
general than state-based merging [Lo et al., JSS, 2012]

State-based mining
Total = 0
Elem = 0

Total = 3
Elem = 1

Total = 5
Elem = 2

Total = 0
Elem = 0

onLoad add add empty

<0
==0
>0

Abstraction
function

<0
=0
>0

<0
=0
>0

<0
=0
>0

<init> Total == 0
Elem==0

Total > 0
Elem > 0

onLoad add

add

empty

[Dallmeier, Lindig, Wasylkowski, Zeller: Mining Object Behavior with ADABU. WODA 2006]
[Marchetto, Tonella, Ricca: State-Based Testing of Ajax Web Applications. ICST 2008]
[Mariani, Marchetto, Nguyen, Tonella. Revolution: Automatic evolution of mined
specifications. ISSRE. 2012]

State-based mining: Features

• The quality of the final model is influenced by the completeness of
the state information that is traced…
• …and by the kind of abstraction implemented by the abstraction

function
• ADABU: https://www.st.cs.uni-saarland.de/models/adabu.php3

https://www.st.cs.uni-saarland.de/models/adabu.php3

construction
mechanism

…

properties of
the result

inference inference

Procedural Declarativevs.

The InvariMint approach to the specification
of model inference algorithm

[Beschastnikh et al. Using Declarative Specification to Improve the Understanding, Extensibility,
and Comparison of Model-Inference Algorithms. TSE. 2015]

An example of algorithm (1)

x immediately followed
by an event in Y

start with x in X

end with y in Y

Property types

An example of algorithm (2)

Property instances

Property mining

An example of algorithm (3)

U

Property composition

Model

Declarative approach: Features

• Pros:
• You know the properties that the inferred automaton will satisfy
• Usually faster than procedural algorithms

• Cons:
• You may miss emerging properties that can be captured with procedural

approaches

InvariMint

• Available at https://github.com/modelinference/synoptic
• The repository contains other model inference tools:

• Synoptic : a tool to infer an FSM model from a sequential log (see later in
these slides)

• CSight : a tool to infer a communicating FSM model from a distributed
system's logs

• Perfume : a tool to infer performance models from system logs

https://github.com/modelinference/synoptic

Models of events, partial order

Mining temporal rules

Traces

Template Rules
<pre> <post>

Instantiate Rules

[Lo, Khoo, Liu. Mining temporal rules for software maintenance. JSME, 2008]
[Yang, et al. Perracotta: mining temporal API Rules from Imperfect Traces. ICSE. 2006]

…

start open close stop

start load stop

start open close stop

begin end

start open
start stop
…
load stop…

Filter

Mining temporal rules

CONFIDENCE OF A RULE
traces rule holds
#traces pre holds

start open

What’s its confidence?

Traces

Template Rules
<pre> <post>

Instantiate Rules

…

start open close stop

start load stop

start open close stop

begin end

start open
start stop
…
load stop…

Filter

Mining temporal rules

Traces

Template Rules
<pre> <post>

Instantiate Rules

…

start open close stop

start load stop

start open close stop

begin end

start open
start stop
…
load stop…

Filter

CONFIDENCE OF A RULE
traces rule holds
#traces pre holds

start open

has 67% confidence

Mining temporal rules

SUPPORT OF A RULE
traces rule holds

#traces
start open

What’s its support?

Traces

Template Rules
<pre> <post>

Instantiate Rules

…

start open close stop

start load stop

start open close stop

begin end

start open
start stop
…
load stop…

Filter

Mining temporal rules

SUPPORT OF A RULE
traces rule holds

#traces
start open

has 50% support

Traces

Template Rules
<pre> <post>

Instantiate Rules

…

start open close stop

start load stop

start open close stop

begin end

start open
start stop
…
load stop…

Filter

Mining temporal rules

Traces

Template Rules
<pre> <post>

Instantiate Rules

…

start open close stop

start load stop

start open close stop

begin end

start open
start stop
…
load stop…

Filter

THRESHOLD
Conf=100%
Supp>20%

start stop

closeopen
…

Mining temporal rules: Discussion

• Expressiveness depends on the template rules
• Confidence and support for tuning the technique wrt imperfect traces
• Example of tool: Texada

• https://bitbucket.org/bestchai/texada
• Supports full LTL
• It uses conf=100% and supp>0%
• Available as an online service, http://elaine.nss.cs.ubc.ca:8080/texada/

• Other tool: Perracotta, http://www.cs.virginia.edu/perracotta/

https://bitbucket.org/bestchai/texada
http://elaine.nss.cs.ubc.ca:8080/texada/
http://www.cs.virginia.edu/perracotta/

Models of data

Example: program for ecommerce

Executions

Log values of vars

totalCostunitCost

4
3
1
7
…

8
3
8
14
…

exec 1
exec 2
exec 3
exec 4
…

Daikon

[Ernst, Cockrell, Griswold, Notkin.
Dynamically Discovering Likely
Program Invariants to Support
Program Evolution. IEEE TSE 2001]

totalCostunitCost

4
3
1
7
…

8
3
8
14
…

_ + _ =_ _ < _

=

_ > 0

unitCost = totalCost
unitCost < totalCost
unitCost <= totalCost
unitCost + totalCost > unitCost
…

preserve expressions with
perfect confidence

unitCost <= totalCost
unitCost + totalCost > unitCost
totalCost > 0

1 > _

remove redundant properties

unitCost <= totalCost
totalCost > 0

Traces Template ExpressionsCandidate Expressions

Daikon: Features

• Expressiveness depends on the set of the template expressions
• More template expressions = more candidate expressions
• But also higher computational cost

• See [Nguyen et al. ICSE 2012] for an approach to deal with polynomial
and array expressions
• Web page: https://plse.cs.washington.edu/daikon/

https://plse.cs.washington.edu/daikon/

Combined models

Combined models

• Constrained: k-Tail with steering, Synoptic
• Extended: GKTail, KLFA

The need for constrained models

kTail with k=2

Overgeneralization problem:
- locally, it sounds as a good

decision
- globally, it generates
anomalous behaviors

Mine global properties, exploit them locally

Traces
Mine Temporal Rules

Build PTA

openFile closeFile
closeConnconnDB

Apply kTail (e.g.
with k=2)

BUT
prevent state

merges that violate
temporal rules

(LOCAL DECISIONS)

[Lo, Mariani, Pezzè. Automatic Steering of Behavioral Model Inference. ESEC/FSE 2009]
[Schneider et al. Synoptic: Summarizing systems logs with refinement. SLAML 2010]

GLOBAL PROPERTIES

k-Tail with steering: Discussion

Application
Number

of
Events

k-Tail k-Tail + steering
Overhead

Prec Recall Prec Recall

X11 Win
Library

356K 0.873 1 0.905 1 3%

CVS Client 2M 0.169 0.97 1 0.97 11%

WebSphere 9M 1 0.99 1 0.99 5%

Measure “the absence of
illegal behaviors in the

model”

Measure “the completeness
of the model”

[Lo, Mariani, Pezzè. Automatic
Steering of Behavioral Model
Inference. ESEC/FSE 2009]

Download tools

• Synoptic: https://github.com/modelinference/synoptic
• (same repo as InvariMint)

https://github.com/modelinference/synoptic

Extended FSA models

• GKTail: Adds information about the ranges of parameters values

• KLFA: Adds information about the recurrence of parameters values

Trace with parameter values

addItem addItem buy
qt=1
unitCost=1
totalCost=1

qt=2
unitCost=3
totalCost=6

addItem buy

…

qt=1
unitCost=5
totalCost=5

GKTail: Merging similar traces

merging

GKTail: Deriving guards

x≥0

processed events events to be processed

x≥1

x=0
0≤y≤20

x=0
y=0,
x=0
y=20

Daikon

GKTail: Synthesis of PTA (EFSM)

0 1 2 3 4 5 6

m1

0≤x≤15

m1

x=1

m2

x=0
y=0
x=y

m3

z={’IT’,’UK’}

m1

x=0

m2

x=0
0≤y≤20

8 9 10 11 12 13

m3

z=’UK’

m3

z=’UK’

m2

x=0
y=3

m3

z=’UK’

m1

x=0

m2

x=0
y=15

22 23 24 25 26 27

m1

x=0 m1

x=1

m2

x=0
y=0
x=y

m3

z=’IT’

m3

z=’IT’

m2

x=0
y=30

GKTail: State merging

• Still based on k-future
• Criteria:

• Equivalence
• Weak subsumption
• Strong subsumption

GKTail: State merging by equivalence

4

1 2

m3

z=’UK’

m1

x=1

m2

x=0
y=3

3

108 9

m3

z=’UK’

m1

x=1 m2

x=0
y=3

1 is 2-equivalent to 8

4

1 2

m3

z=’UK’

m1

x=1
m2

x≥0
y=3

3

1 2-weakly-subsumes 8

GKTail: State merging by weak subsumption

108 9

m3

z=’UK’

m1

x=1 m2

x=0
y=3

4

1 2

m3

z=’UK’

m1

x=1
m2

x≥0
y=3

3

1 2-strongly-subsumes 8

GKTail: State merging by strong subsumption

8 9

m3

z=’UK’

m1

x=1

GKTail: Example
2-weak-subsumption

y≤20

y≤20

GKTail: Example
2-weak-subsumption

y≤20

GKTail: Example

y≤20

GKTail: Example

0 1 2 3 4 5 6

m1

0≤x≤15

nUsr = 1

m1

x=1

nUsr=2

m2

x=0
y=0
x=y

m3

z={’IT’,’UK’} m1

x=0

nUsr=3

m2

x=0
0≤y≤20

8 9 12 13

m3

z=’UK’

m3

z=’UK’
m2

y>x

m1

x=0

nUsr=3

m2

x=0
y≤15

24 25 26 27

m2

x=0
y=0
x=y

m3

z=’IT’

m3

z=’IT’

m2

x=0
y=30

m1

x=0

nUsr = 3

Result

KLFA: Rationale

Concrete values do not matter. How
values repeat across events matters!!

takeLock 28145 0xd42e9a78
takeLock 28145 0xd11b33b1
relLock 28145 0xd11b33b1
relLock 28145 0xd42e9a78
takeLock 12130 0xd11b33b1
takeLock 12130 0xd42e9a78
…

Event
name

Thread id Lock id

KLFA: Rationale

Concrete values do not matter. How
values repeat across events matters!!

takeLock 28145 0xd42e9a78
takeLock 28145 0xd11b33b1
relLock 28145 0xd11b33b1
relLock 28145 0xd42e9a78
takeLock 12130 0xd11b33b1
takeLock 12130 0xd42e9a78
…

Event
name

Thread id Lock id

Idea: rewrite event names taking recurrence
into account

takeLock 28145 0xd42e9a78
takeLock 28145 0xd11b33b1
relLock 28145 0xd11b33b1
relLock 28145 0xd42e9a78
takeLock 12130 0xd11b33b1
takeLock 12130 0xd42e9a78
…

Event
name

Thread id Lock id

takeLock_A_C
takeLock_A_D
relLock_A_D
relLock_A_C
takeLock_B_D
takeLock_B_C
…

How KLFA works

• Implement several rewriting strategies to capture different cases
• Implement an algorithm to detect the best rewriting strategy that

must be applied to each chunk of trace file
• Reuse algorithms for regular inference (the publicly available

implementation uses kBehavior)

[Mariani, Pastore. Automatic Identification of Failure Causes in System Logs, ISSRE, 2008]

Extended FSA models: Features

• GKTail = k-Tail + guards, KLFA = kBehavior + recurrences
• See [Lo, Mariani, Santoro, Learning extended FSA from Software: An

Empirical Assessment. JSS, 2012] for an empirical comparison of four
models (k-Tail, kBehavior, GKTail, KLFA) on 10 applications
• GKTail and KLFA will soon be available again through the LTA web page

http://www.lta.disco.unimib.it/

http://www.lta.disco.unimib.it/

What kind of model should we
use?

The big picture

• Models of events, total order
• Procedural

• Trace-based mining
• State-based merging: k-Tail
• Behavior-based merging: kBehavior

• State-based mining: ADABU, ReAjax, Revolution
• Declarative: InvariMint

• Models of events, partial order: Perracotta, Texada
• Models of data: Daikon
• Combined models

• Constrained: k-Tail with steering, Synoptic
• Extended: GKTail, KLFA

Different models for different aspects

Empirical studies: Complexity

Length of traces/Noise/Number
of different events in the traces

Mining simple FSAMining extended FSA
Mining temporal rules

Mining constraints

[Lo, Mariani, Santoro, Learning extended FSA from Software: An Empirical Assessment.
JSS, 2012]
[Yang, Evans, Bhardwaj, Bhat, Das. Perracotta: mining temporal API Rules from Imperfect Traces. ICSE. 2006]
[Nugyen, Marchetto, Tonella. Automated Oracles: An Empirical Study on Cost and Effectiveness, ESEC/FSE, 2013]

Empirical studies: Sensitivity

Capture small differences

Mining simple FSAMining extended FSA
Mining temporal rules

Mining constraints

Capture major differences

FSA good to analytically
capture the behavior of small

units (e.g., components)

Temporal rules and constraints
good to capture some behaviors

in relatively big applications

Take home

• Think to your research area
• If you need models and specifications…
• …and you do not have any,
• but you have a way of executing your software
• Specification Mining could be an option!

