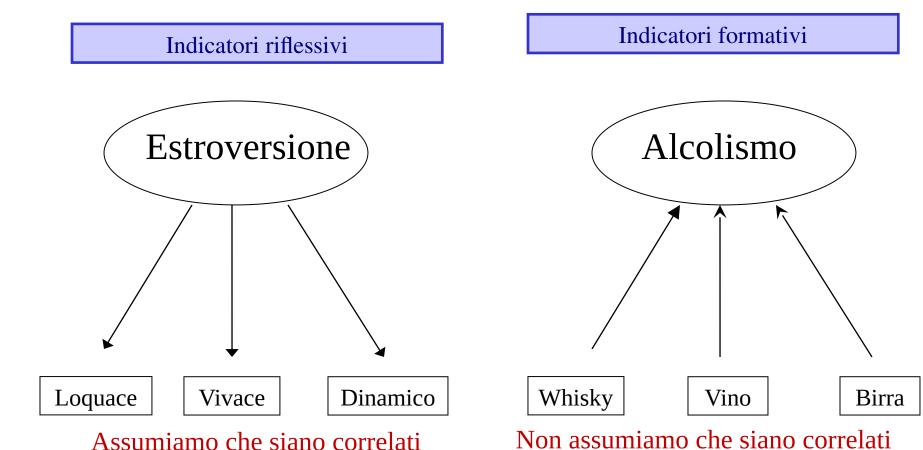


Scopi generali

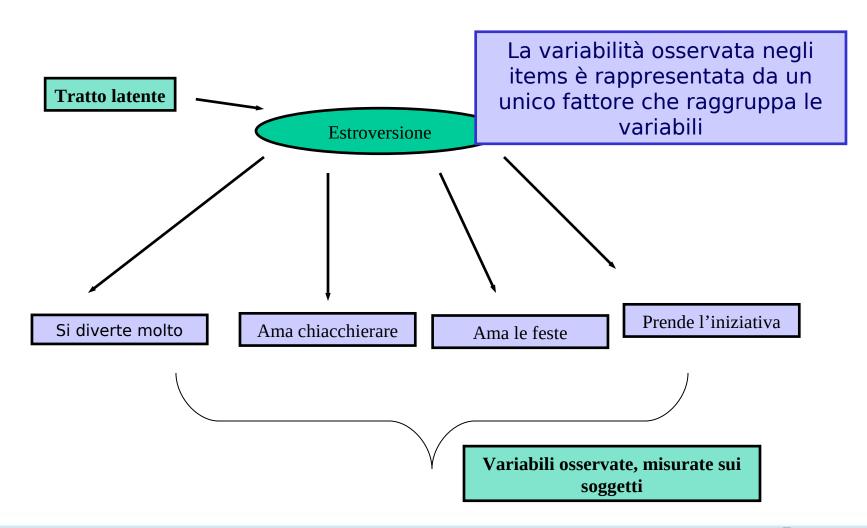
- L'Analisi Fattoriale (e varianti) si propone di estrarre un numero limitato di fattori (variabili latenti o sottostanti) da un set di variabili osservate (e.s. items), al fine di rappresentare al meglio la variabilità di tale set
- Ciò consente di interpretare le relazioni tra un gran numero di variabili osservate mediate un numero limitato di fattori

Indicatori vs costrutto

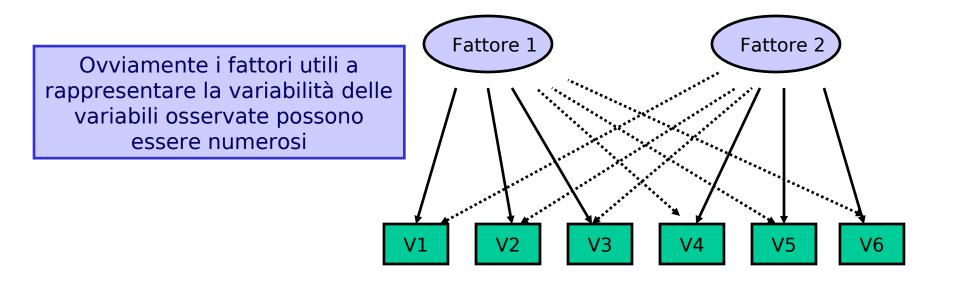

Indicatori

- ⇒Un buon indicatore deve essere una buona misura del costrutto e **non** deve essere una buona misura di altri costrutti
- ⇒Piu' indicatori sono necessari per definire un costrutto
- ⇒La definizione concreta (*operazionalizzazione*) di un costrutto deriva degli indicatori
- ⇒ Molto spesso in Psicologia il costrutto e' ipotetico/latente mentre gli indicatori sono osservabili/empirici

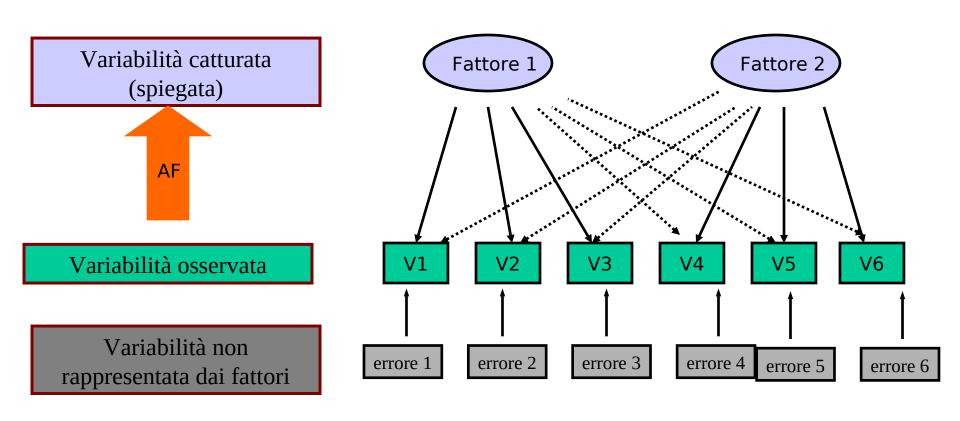
Costrutto

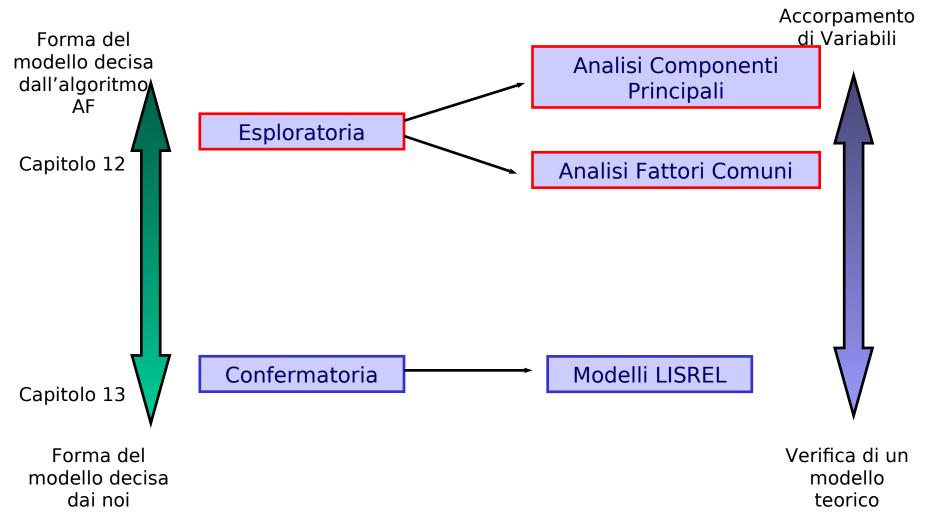

- ⇒Un costrutto puo' essere definito come un un concetto (dimensione, fattore, tratto, classe, componente) teorico con certe conseguenze empiriche
- ⇒Gli indicatori misurano le conseguenze empiriche
- ⇒ Il costrutto associa gli indicatori (legno puo' associare tavolo, sedia, quadro, bastone, albero, casa, barca)
- ⇒ Da un punto di vista statistico, se alcuni indicatori corrrelano tra di essi, possiamo inferire la presenza di un costrutto sottostante (o viceversa)

Due tipi di indicatori e costrutti



Un possibile modello


Un altro possibile modello


Fattori ed errori

Guadagnando in parsimonia ed interpretabilità delle relazioni, non ci si può aspettare di non perdere qualcosa in precisione

Tipi di Analisi Fattoriale

Concetti di base

- Alcuni concetti sono utili per ogni tipo di Analisi Fattoriale, indipendentemente dalle differenze tecniche (che vedremo successivamente) tra questi tipi di analisi
- Tutte le varianti dell'AF: Rappresentazione delle relazioni fra variabili misurate mediante un numero ristretto di fattori

Relazioni fra variabili

Le relazioni fra variabili (continue) sono calcolabili mediante il coefficiente **r** di correlazione di Pearson.

Matrice di correlazione

A1:Si diverte molto

A2: Ama chiacchierare

A3: Ama le feste

A4: Prende l'iniziativa

Correlazioni

		a1	a2	a3	a4
a1	Correlazione di Pearson	1	.084	.154	.242*
	Sig. (2-code)		.409	.126	.015
	N	100	100	100	100
a2	Correlazione di Pearson	.084	1	.514**	.231*
	Sig. (2-code)	.409		.000	.021
	N	100	100	100	100
a3	Correlazione di Pearson	.154	.514**	1	.588**
	Sig. (2-code)	.126	.000		.000
	N	100	100	100	100
a4	Correlazione di Pearson	.242*	.231*	.588**	1
	Sig. (2-code)	.015	.021	.000	
	N	100	100	100	100

^{*·} La correlazione è significativa al livello 0,05 (2-code).

^{**.} La correlazione è significativa al livello 0,01 (2-code).

Correlazioni e Fattori

Un altro modo per definire lo scopo dell'Analisi Fattoriale è l'estrazione di un numero ristretto di fattori che riproducano al meglio la matrice di correlazione osservata

Correlazioni

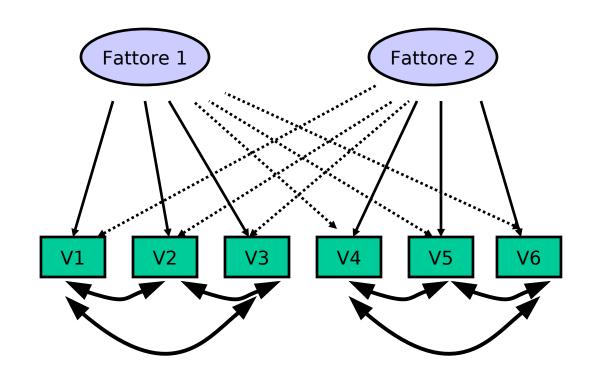
Matrice di correlazione

A1:Si diverte molto

A2: Ama chiacchierare

A3: Ama le feste

A4: Prende l'iniziativa


		a1	a2	a3	a4
a1	Correlazione di Pearson	1	.084	.154	.242*
	Sig. (2-code)		.409	.126	.015
	N	100	100	100	100
a2	Correlazione di Pearson	.084	1	.514**	.231*
	Sig. (2-code)	.409		.000	.021
	N	100	100	100	100
a3	Correlazione di Pearson	.154	.514**	1	.588**
	Sig. (2-code)	.126	.000		.000
	N	100	100	100	100
a4	Correlazione di Pearson	.242*	.231*	.588**	1
	Sig. (2-code)	.015	.021	.000	
	N	100	100	100	100

^{*} La correlazione è significativa al livello 0,05 (2-code).

^{**.} La correlazione è significativa al livello 0,01 (2-code).

Relazioni fra variabili e fattori latenti

L'idea di fondo è che le variabili osservate correlino perché condividono un fattore sottostante

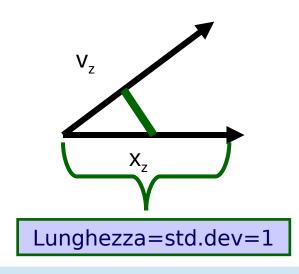
Relazioni fra variabili e fattori latenti

Dunque vogliamo creare delle nuove variabili (fattori) che combinino le variabili osservate che correlano molto

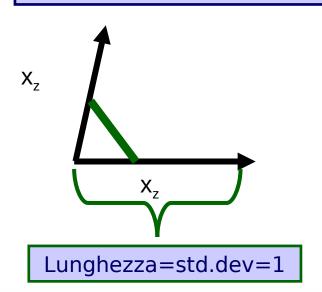
Correlazioni

			a1	a2	a3	a4
a1 Correlazione di Pearson		1	.084	.154	.242*	
		Sig. (2-code)		.409	.126	.015
		N	100	100	100	100
a2 Correlazione di Pearson		.084	1	.514**	.231*	
		Sig. (2-code)	.409		.000	.021
		N	100	100	100	100
	a3	Correlazione di Pearson	.154	.514**	1	.588**
		Sig. (2-code)	.126	.000		.000
		N	100	100	100	100
	a4	Correlazione di Pearson	.242*	.231*	.588**	1
		g. (2-code)	.015	.021	.000	
ne non			100	100	100	100

E separino le variabili che non correlano fra loro

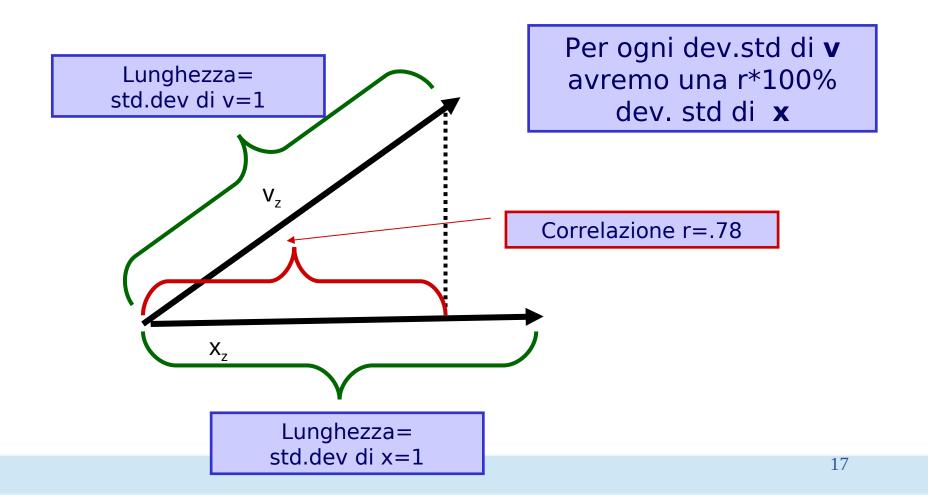

relazione è significativa al livello 0,05 (2-code).

^{**.} La correlazione è significativa al livello 0,01 (2-code).

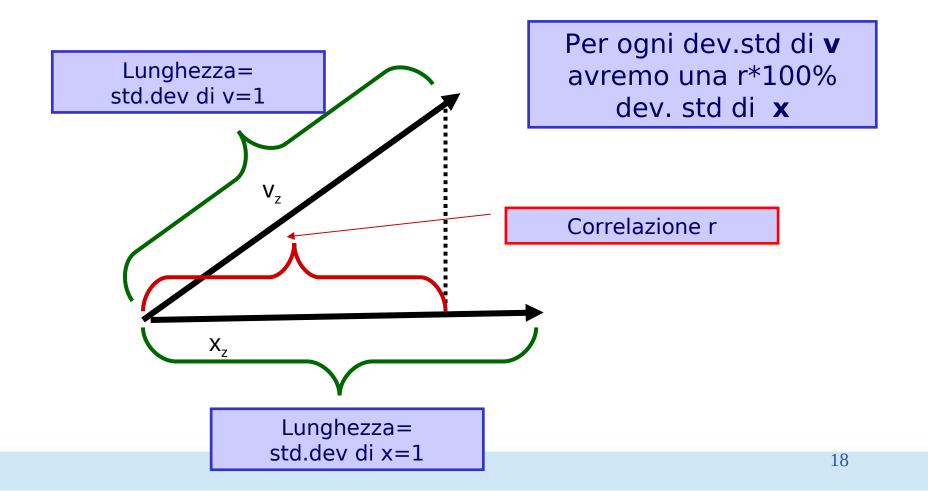


- Ogni variabile può essere rappresentata mediante un vettore di lunghezza uguale alla sua deviazione standard
- L'associazione tra due variabili si può rappresentare mediante l'angolo tra i due vettori (prodotto tra i vettori=prodotto tra gli z =correlazione)

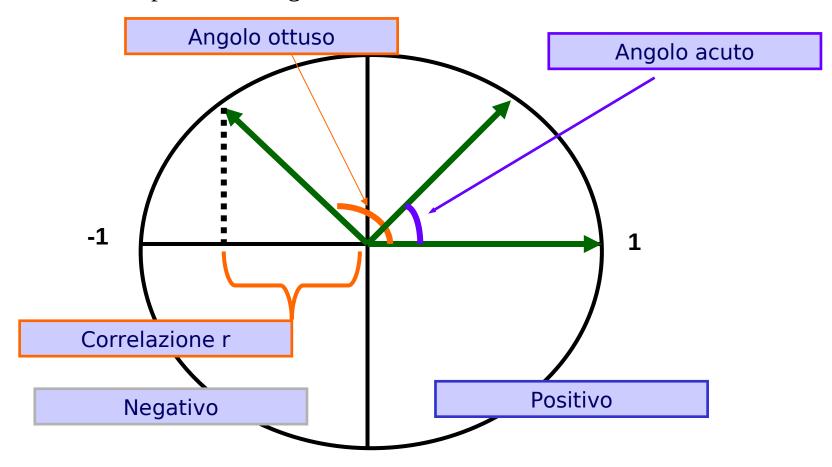
Angolo acuto= associazione forte



Angolo meno acuto= Associazione debole

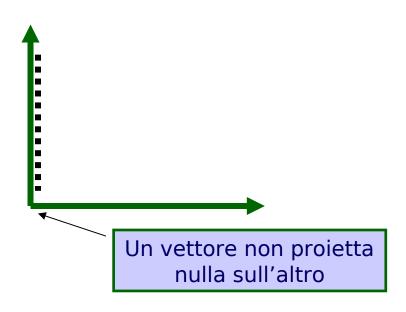


• La correlazione quantifica la proiezione di un vettore-variabile sull'altro!



• La correlazione quantifica la proiezione di un vettore-variabile sull'altro!

correlazione positiva o negativa

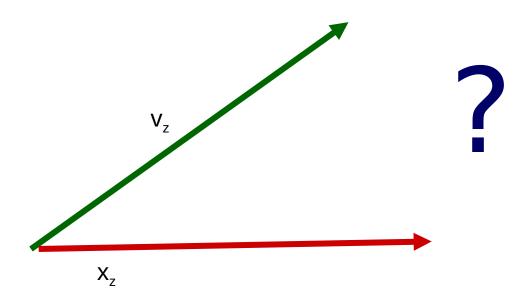


• Se la proiezione è zero, cioè **r=0**, le due variabili saranno indipendenti (linearmente)

Questo è il motivo per cui spesso si dice che due variabili non correlate sono

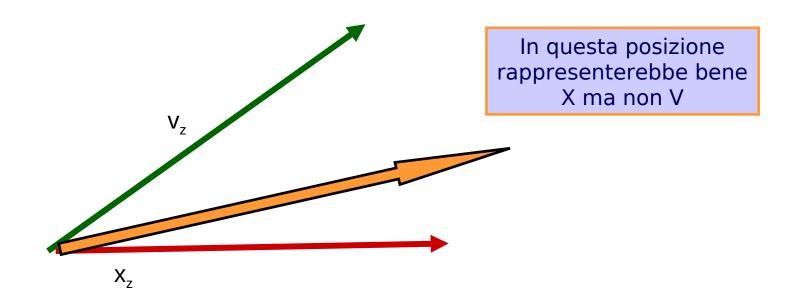
ortogonali

E che due variabili correlate sono **oblique**

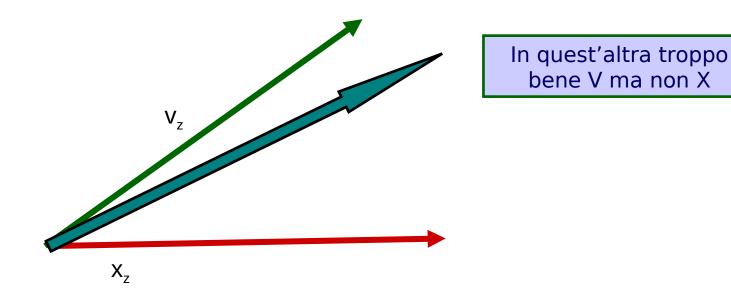


Logica dell'estrazione dei fattori

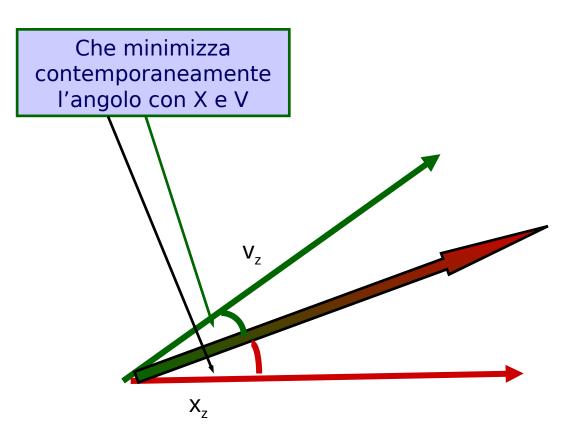
• In tutte le varianti dell'AF il fine è di estrarre una serie di fattori che siano al "centro" dell'insieme di variabili



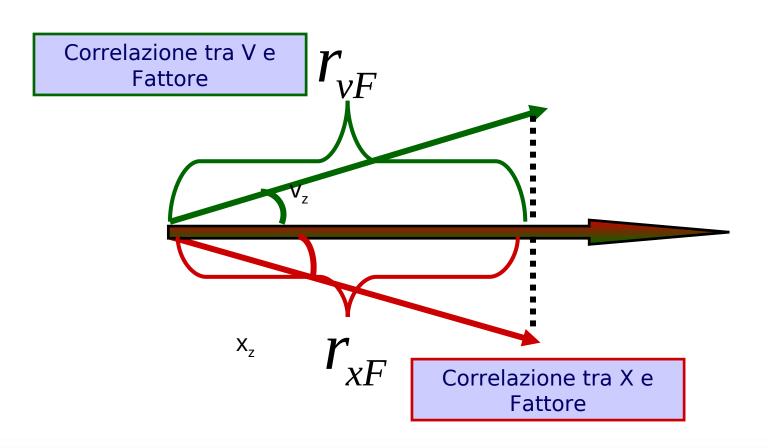
• Applichiamo la rappresentazione vettoriale: Ci proponiamo di rappresentare le due variabili qui sotto mediante un fattore unico: Dove sarà questo fattore?



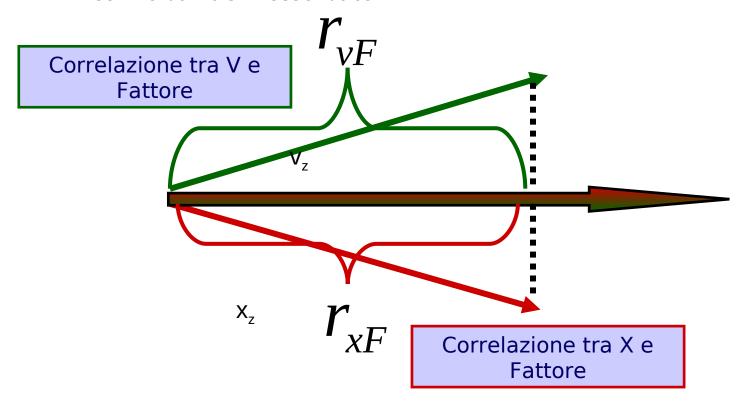
• Il fattore deve essere una nuova variabile che meglio rappresenti entrambe le variabili



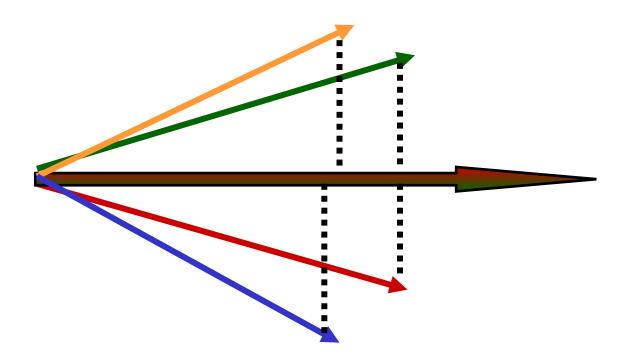
• Il fattore deve essere una nuova variabile che meglio rappresenti entrambe le variabili



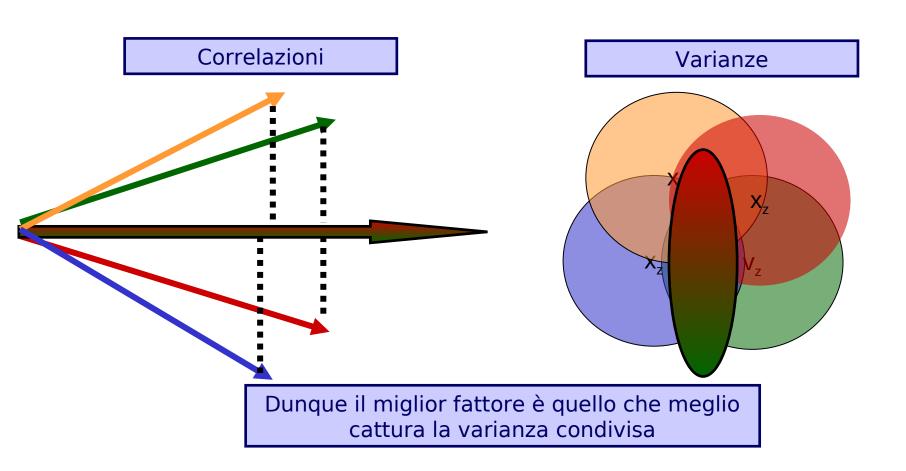
• Il fattore comune sarà al centro! Che vuol dire precisamente?

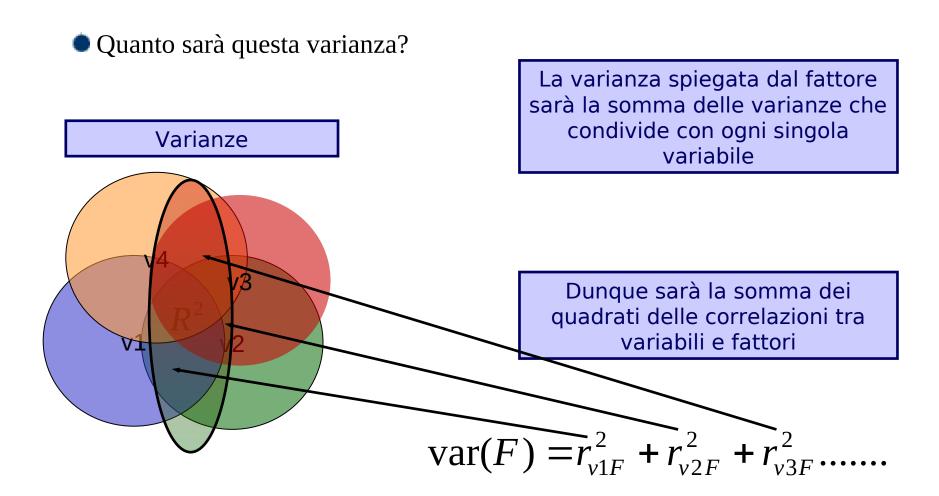


L'angolo è tanto più piccolo quanto più è alta la correlazione


- L'angolo è tanto più piccolo quanto più è alta la correlazione
- Dunque il miglior fattore è quello che massimizza le correlazioni con le variabili osservate

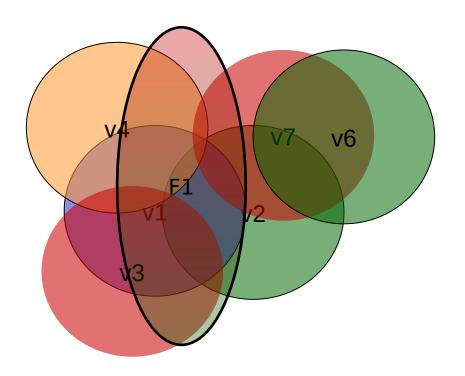
Le correlazioni possono variare


Nel caso generale (non due variabili) le correlazioni con il fattore sono differenti per le varie variabili


Correlazioni e Varianze

• Ricorda che la correlazione (al quadrato) indica la varianza condivisa

Varianza spiegata dal fattore

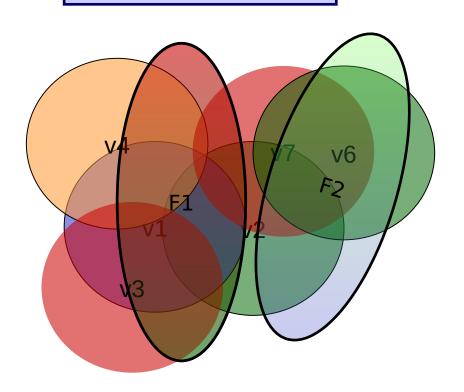


Più di un fattore

Consideriamo di aver estratto un fattore da questo insieme di variabili

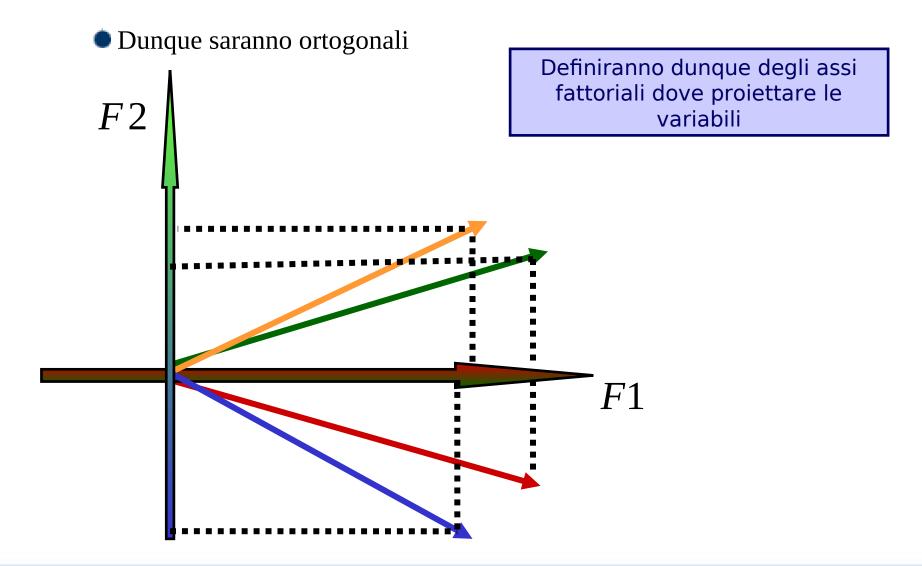
Varianze

Il fattore che estraiamo sarà quello che massimizza la varianza spiegata

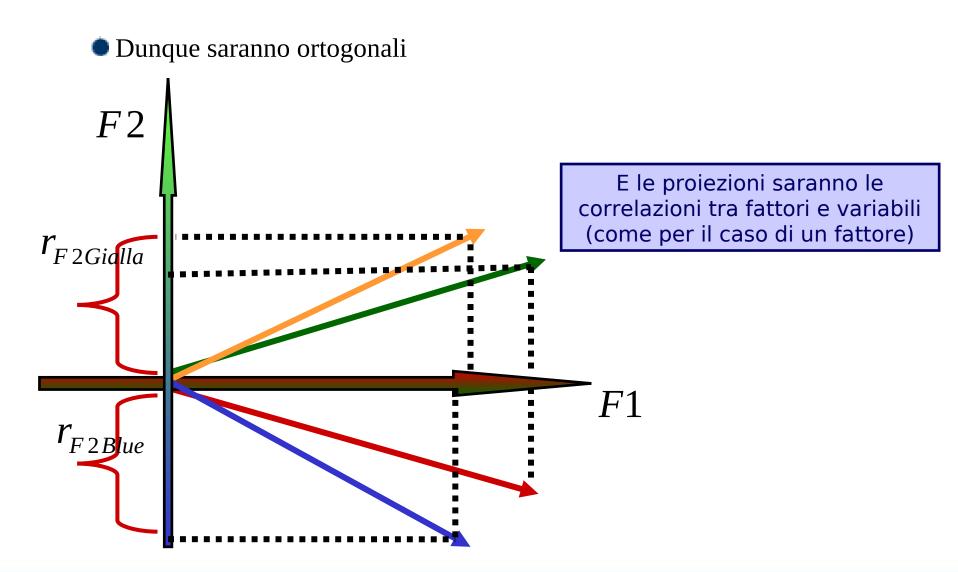

Ma non necessariamente cattura tutta la varianza condivisa

Più di un fattore

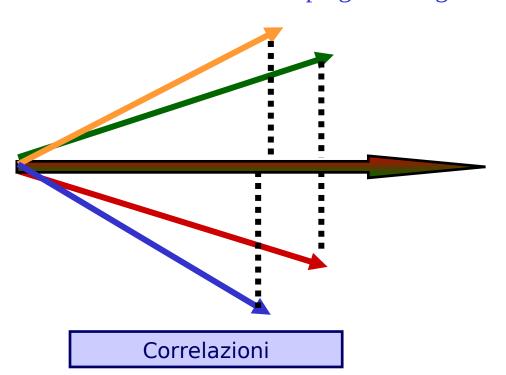
Avremo così rappresentato le varianze osservate mediante due fattori

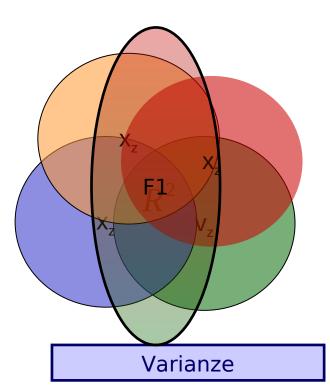

Varianze

I fattori non condividono varianza, dunque non sono correlati



Estrazione di più fattori


Estrazione di più fattori



Soluzione fattoriale

- La soluzione fattoriale si compone di:
 - La matrice di correlazione tra fattori e variabili
 - La varianza spiegate da ogni fattore

Soluzione Fattoriale

La soluzione fattoriale si compone di:

La matrice di correlazione tra fattori e variabili

• La varianza spiegate da ogni fattore

Varianza totale spiegata

		Autovalori iniziali			i dei fattori non ı	ruotati
Componente	Totale	% di varianza	% cumulata	Totale	% di varianza	% cum
1	1.962	19.617	19.617	1.962	19.617	19
2	1.472	14.720	34.337	1.472	14.720	34
3	1.084	10.839	45.176			
4	.994	9.937	55.113			
5	.973	9.726	64.839			
6	.876	8.757	73.596			
7	.811	8.105	81.701			
8	.670	6.697	88.398			
9	.605	6.051	94.449			
10	.555	5.551	100.000			

Metodo di estrazione: Analisi componenti principali.

Matrice di componenti

	Compo	onente		
	1	2		
v1	.438	.160		
v2	.467	010		
v3	.594	257		
v4	.439	.610		
v5	.453	.127		
v6	.351	422		
v7	.213	.454		
v8	.304	397		
v9	.722	210		
v10	.135	.636		

Metodo estrazione: analisi componenti pri

a. 2 componenti estratti

Terminologia

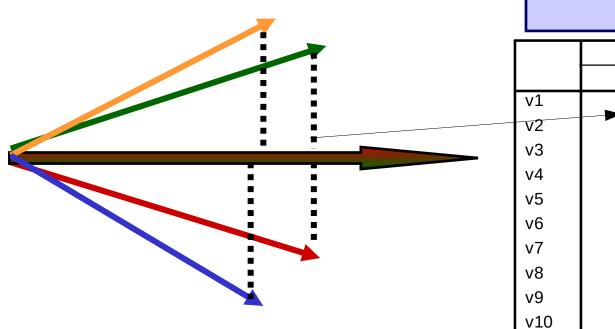
La soluzione fattoriale si compone di:

• La matrice di correlazione tra fattori e variabili

Le correlazioni tra fattori e variabili si chiamano PESI FATTORIALI o SATURAZIONI FATTORIALI

Matrice di	component ^a
------------	------------------------

<u> </u>			
	Componente		
	1	2	
v1	.438	.160	
v2	.467	010	
v3	.594	257	
v4	.439	.610	
v5	.453	.127	
v6	.351	422	
v7	.213	.454	
v8	.304	397	
v9	.722	210	
v10	.135	.636	


Metodo estrazione: analisi componenti pri

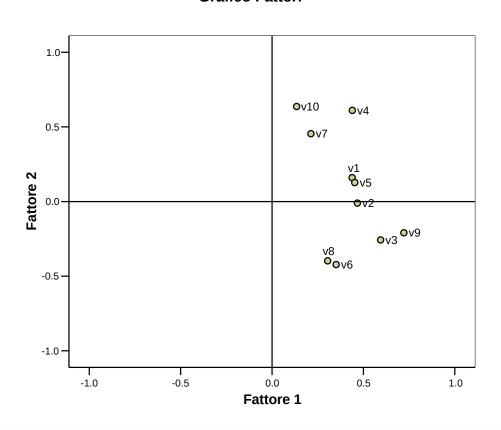
a. 2 componenti estratti

Soluzione fattoriale

• La soluzione fattoriale rappresentata geometricamente può essere vista anche in una matrice numerica

Saturazioni = correlazioni Fattori variabili

	Componente		
	1	2	
v1	.438	.160	
v2	.467	010	
v3	.594	257	
v4	.439	.610	
v5	.453	.127	
v6	.351	422	
v7	.213	.454	
v8	.304	397	
v9	.722	210	
v10	.135	.636	


Metodo estrazione: analisi componenti principali.

a. 2 componenti estratti

Plot dei Fattori

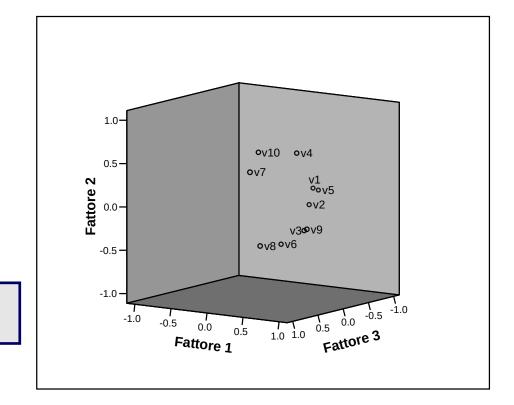
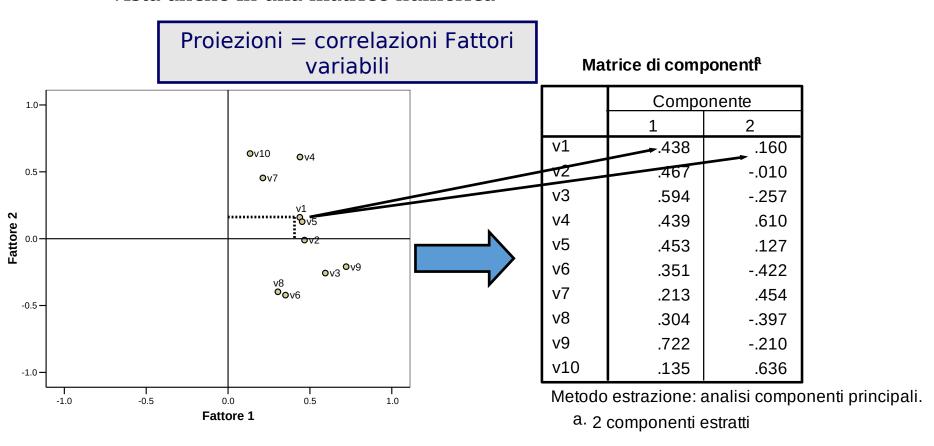

 Comunemente si visualizza lo spazio fattoriale mediante gli assi fattoriali e le variabili rappresentate come punti con coordinate uguali alle correlazioni con i fattori

Grafico Fattori

Plot K fattori


 L'estrazione di K fattori definisce uno spazio a K dimensioni dove tutte le variabili sono rappresentate mediante coordinate uguali alle correlazioni con i fattori

Per più di 3 fattori, si può visualizzare i fattori a 2 a 2

Soluzione numerica

 La soluzione fattoriale rappresentata geometricamente può essere vista anche in una matrice numerica

Terminologia

- La soluzione fattoriale si compone di:
 - La varianza spiegate da ogni fattore

Le varianze spiegate dai fattori si chiamano AUTOVALORI

Varianza totale spiegata

		variariza totale spiegata					
	Autovalori iniziali			Autovalori iniziali Pesi dei fattori non ruo <mark>fati</mark>			
Componente	Totale	% di varianza	% cumulata	Totale	% di varianza	% cumular	a X ₂
1	1.962	19.617	19.617	1.962	19.617	19.617	7 Z X
2	1.472	14.720	34.337	1.472	14.720	34.337	7
3	1.084	10.839	45.176		/		
4	.994	9.937	55.113				
5	.973	9.726	64.839				^Z Vz
6	.876	8.757	73.596		\		
7	.811	8.105	81.701				
8	.670	6.697	88.398				
9	.605	6.051	94.449				
10	.555	5.551	100.000				

Metodo di estrazione: Analisi componenti principali.

Varianze

Relazioni tra le informazioni

SATURAZIONI FATTORIALI

Autovalori

Matrice di componenti

	Componente		
	1	2	
v1	.438	.160	
v2	.467	010	
v3	.594	257	
v4	.439	.610	
v5	.453	.127	
v6	.351	422	
v7	.213	.454	
v8	.304	397	
v9	.722	210	
v10	.135	.636	

Varianza totale spiegata

			Autovalori inizia	Pes	i dei fattori no	
Compone	ente	Totale	% di varianza	% cumulata	Totale	% di varianz
1		1.962	19.617	19.617	1.962	19.61
2		1.472	14.720	34.337	1.472	14.72
3		1.084	10.839	45.176		
4		.994	9.937	55.113		
5	/	.973	9.726	64.839		
6		.876	8.757	73.596		
7	/	.811	8.105	81.701		
8	/	.670	6.697	88.398		
9	′	.605	6.051	94.449		
10		.555	5.551	100.000		

Metogo di estrazione: Analisi componenti principali.

Metodo estrazione: analisi componenti principali.

a. 2 componenti estratti

La somma dei quadrati in colonna equivale alla varianza spiegata dal fattore corrispettivo

Comunalità

SATURAZIONI FATTORIALI

Matrice di componenti

	Compo		
	1	2	
v1	.438	.160	
v2	.467	010	
v3	.594	257	
v4	.439	.610	
v5	.453	.127	
v6	.351	422	
v7	.213	.454	
v8	.304	397	
v9	.722	210	
v10	.135	.636	

La somma dei quadrati in riga equivale alla varianza dell'item spiegata da tutti i fattori estratti

Tale quantità e denominata comunalità

Metodo estrazione: analisi componenti principali.

a. 2 componenti estratti

Comunalità

SATURAZIONI FATTORIALI

Matrice di componenta

	Compo	onente	
	1	2	
v1	.438	.160	.191+.025 .214
v2	.467	010	
v3	.594	257	I due fattori estratti spiegano il
v4	.439	.610	21% della varianza dell'item
v5	.453	.127	
v6	.351	422	
v7	.213	.454	
v8	.304	397	La comunalità indica quanto un item
v9	.722	210	partecipa alla costruzione dei fattori
v10	.135	.636	

Metodo estrazione: analisi componenti principali.

a. 2 componenti estratti

I passaggi fondamentali

- 1) Scelta del modello fattoriale
- 2) Scelta del numero di fattori
- 3) Rotazione della struttura fattoriale
- 4) Selezione delle variabili
- 5) Interpretazione dei fattori
- 6) Punteggi fattoriali

Esempio (provvisorio)

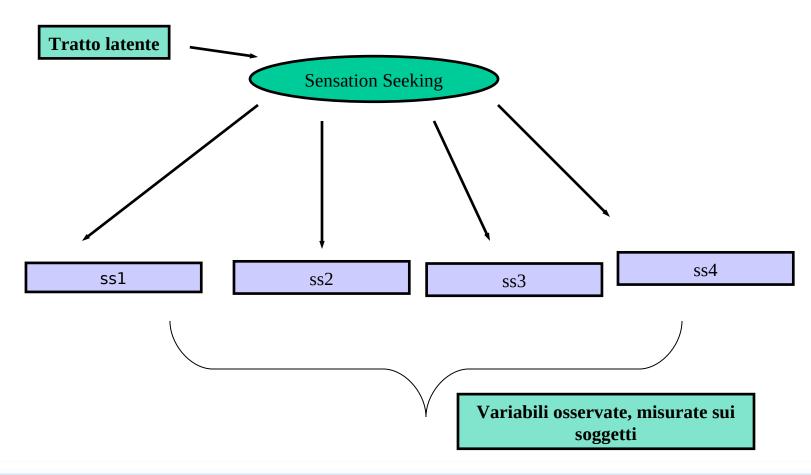
La ricerca è volta a studiare le caratteristiche di personalità che possono associarsi a comportamenti pericolosi di adolescenti maschi. I costrutti di personalità misurati sono: il **sensation seeking**, la propensione al rischio, la mancanza di controllo. La tendenza ad attuare comportamenti pericolosi è misurata mediante un indice di frequenza di alcuni comportamenti indicatori (uso di droghe, partecipazione a gang, uso di armi, etc).

Il fine della ricerca è di stabilire se le variabili di personalità possono essere dei predittori della tendenza ad attuare comportamenti pericolosi.

Descrizione dei dati

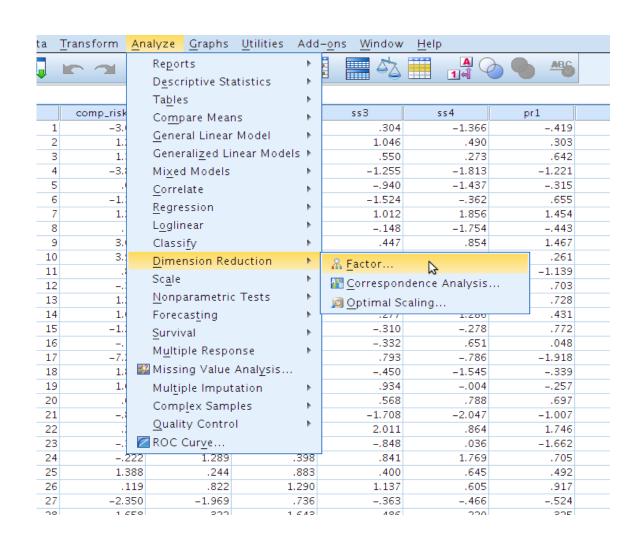
I tre costrutti di personalità sono stati misurati con 4 item ciasuno. Sensation seeking con gli item ss1, ss2, ss3 e ss4. Etc. etc. (da vedersi successivamente)

Esempio (provvisorio)


Intendiamo vedere se possiamo estrarre un fattore comune agli item di sensation seeking e vedere se tale fattore spiega bene la variabilità degli items

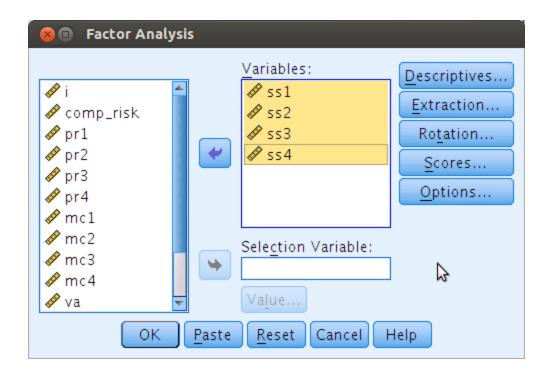
- L'Analisi Fattoriale (e varianti) si propone di estrarre un numero limitato di fattori al fine di rappresentare al meglio la variabilità di tale set
- A tale scopo estrae una serie di fattori fra loro ortogonali al fine di massimizzare la correlazione fra variabili osservate
- La soluzione fattoriale è l'insieme di questi fattori, descritti dalle loro varianze (autovalori / numero item), le saturazioni fattoriali e la comunalitò degli item

Un possibile modello

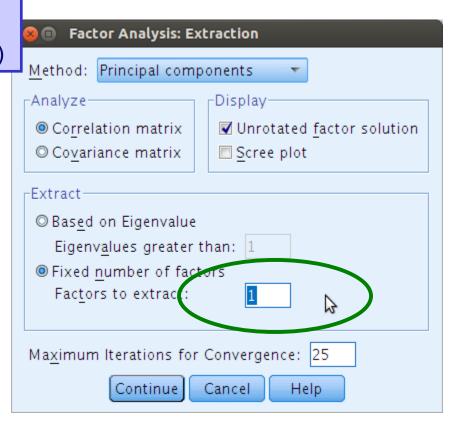


Risposte standardizzate agli item (la standardizzazione è ininfluente)

	ss1	ss2	ss3	ss4	
25	942	-1.027	.304	-1.366	
	.013	.452	1.046	.490	
	185	286	.550	.273	
	-1.635	.318	-1.255	-1.813	
	-1.087	.183	940	-1.437	
70	.880	327	-1.524	362	
28	1.672	.493	1.012	1.856	
1'	.724	-1.225	148	-1.754	
34	097	1.061	.447	.854	
.8	.387	.510	1.041	.835	
)8	198	912	367	562	
25	-1.487	764	.188	-1.178	
'5	-1.204	767	.184	667	
ŀ3	584	.316	.277	1.286	
36	-1.077	322	310	278	
20	.537	.510	332	.651	
28	1.099	.348	.793	786	
21	-1.372	223	450	-1.545	
30	.321	.405	.934	004	
26	.549	.695	.568	.788	
13	987	-1.455	-1.708	-2.047	
31	1.218	1.901	2.011	.864	
'3	.566	841	848	.036	
22	1.289	.398	.841	1.769	
38	.244	.883	.400	.645	
.9	.822	1.290	1.137	.605	



SPSS



Seleziono le variabili che voglio analizzare

Chiedo di estrarre un fattore (poi vedremo altri metodi per decidere quanti fattori estrarre)

Soluzione fattoriale

Il primo fattore estratto (quello che ci interessa) spiega il 65% della varianza degli item

Total Variance Explained

	Initial Eigenvalues			Extractio	n Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	2.615	65.382	65.382	2.615	65.382	65.382
2	.499	12.471	77.853			
3	.453	11.318	89.171			
4	.433	10.829	100.000			

Extraction Method: Principal Component Analysis.

Soluzione fattoriale

Gli item sono ben correlati con il fattore, dunque possiamo utilizzare il fattore come variabile rappresentativa degli item

Component Matrix^a

	Component
	1
ss1	.821
ss2	.798
ss3	.814
ss4	.800

Extraction Method: Principal Component Analysis.

> a. 1 component s extracted.

- L'Analisi Fattoriale (e varianti) si propone di estrarre un numero limitato di fattori al fine di rappresentare al meglio la variabilità di tale set
- A tale scopo estrae una serie di fattori fra loro ortogonali al fine di massimizzare la correlazione fra variabili osservate
- La soluzione fattoriale è l'insieme di questi fattori, descritti dalle loro varianze (autovalori / numero item), le saturazioni fattoriali e la comunalitò degli item

